Skip to main content
Log in

Muskuläre Kanalopathien

Myotonien und periodische Paralysen

Muscle channelopathies

Myotonias and periodic paralyses

  • CME Weiterbildung · Zertifizierte Fortbildung
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Myotonien und familiäre periodische Paralysen sind muskuläre Kanalopathien. Ihnen ist eine Störung der muskulären Erregbarkeit gemeinsam, die durch Mutationen in spannungsgesteuerten Na+-, K+-, Ca2+- und Cl-Kanälen bedingt ist. Üblicherweise verursacht Membranübererregbarkeit myotone Steifigkeit; durch Depolarisation kann die Über- in Untererregbarkeit umschlagen und dadurch eine transiente Muskelschwäche hervorrufen, wie sie bei Patienten mit ausgeprägter Myotonie zu beobachten ist. Eine länger anhaltende Membrandepolarisation ist für alle periodischen Paralysen die gemeinsame Basis der Muskelschwäche. Die Kanalstörung kann interiktal so gut kompensiert sein, dass spezifische exogene oder endogene Trigger zur Auslösung von Schwächeepisoden erforderlich sind. Ein besonderer Trigger ist das Serumkalium, welches das Ruhemembranpotenzial und damit die Erregbarkeit steuert. Für die periodischen Paralysen bekannte Mutationen, deren Wirkung nicht durch Normbedingungen kompensiert werden kann, führen zu einer progressiven Myopathie.

Summary

The myotonias and familial periodic paralyses are muscle channelopathies. They have in common an impaired muscle excitation that is caused by mutations in voltage-gated Na+, K+, Ca2+, and Cl channels. Membrane hyperexcitability usually results in myotonic stiffness; with increasing membrane depolarization hyperexcitability can be transiently turned into hypoexcitability causing transient weakness as in severe myotonia. Hypoexcitability due to long-lasting depolarization that inhibits action potential generation is the common mechanism for the periodic paralyses. Interictally, the ion channel malfunction may be compensated, so that specific exogenous or endogenous provocative factors are required to produce symptoms in the patients. An especially obvious triggering agent is the level of serum potassium, the ion decisive for resting membrane potential and degree of excitability. Periodic paralysis mutations for which the ion channel malfunction is not fully compensated interictally cause progressive myopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Deymeer F, Cakirkaya S, Serdaroglu P et al (1998) Transient weakness and compound muscle action potential decrement in myotonia congenita. Muscle Nerve 21:1334–1337

    Article  PubMed  CAS  Google Scholar 

  2. Dupré N, Chrestian N, Bouchard JP et al (2009) Clinical, electrophysiologic, and genetic study of non-dystrophic myotonia in French-Canadians. Neuromuscul Disord 19:330–334

    Article  PubMed  Google Scholar 

  3. Heatwole CR, Moxley RT 3rd (2007) The nondystrophic myotonias. Neurotherapeutics 4:238–251

    Article  PubMed  CAS  Google Scholar 

  4. Ikeda K, Iwasaki Y, Kinoshita M et al (2002) Acetazolamide-induced weakness in hypokalemic periodic paralysis. Intern Med 41:743–745

    Article  PubMed  Google Scholar 

  5. Junker J, Haverkamp W, Schulze-Bahr E et al (2002) Amiodarone and acetazolamide for the treatment of genetically confirmed severe Andersen syndrome. Neurology 59:466

    PubMed  CAS  Google Scholar 

  6. Jurkat-Rott K, Lehmann-Horn F (2005) Muscle channelopathies and critical points in functional and genetic studies. J Clin Invest 115:2000–2009

    Article  PubMed  CAS  Google Scholar 

  7. Jurkat-Rott K, Lehmann-Horn F (2007) Genotype-phenotype correlation and therapeutic rationale in hyperkalemic periodic paralysis. Neurotherapeutics 4:216–224

    Article  PubMed  CAS  Google Scholar 

  8. Jurkat-Rott K, Weber MA, Fauler M et al (2009) K+-dependent paradoxical membrane depolarization and Na+ overload, major and reversible contributors to weakness by ion channel leaks. Proc Natl Acad Sci U S A 106:4036–4041

    Article  PubMed  CAS  Google Scholar 

  9. Klingler W, Lehmann-Horn F, Jurkat-Rott K (2005) Complications of anesthesia in neuromuscular disorders. Neuromuscul Disord 15:195–206

    Article  PubMed  Google Scholar 

  10. Kubota T, Kinoshita M, Sasaki R et al (2009) New mutation of the Na channel in the severe form of potassium-aggravated myotonia. Muscle Nerve 39:666–673

    Article  PubMed  CAS  Google Scholar 

  11. Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79:1317–1372

    PubMed  CAS  Google Scholar 

  12. Lehmann-Horn F, Rüdel R, Jurkat-Rott K (2004) Chapter 46: nondystrophic myotonias and periodic paralyses. In: Engel AG, Franzini-Armstrong C (Hrsg) Myology, 3. Aufl. McGraw-Hill, New York, S 1257–1300

  13. Lerche H, Heine R, Pika U et al (2003) Human sodium channel myotonia: nlowed channel inactivation due to substitutions for a glycine within the III/IV linker. J Physiol (Lond) 470:13–22

    Google Scholar 

  14. Meyer T, Jurkat-Rott K, Huebner A et al (2008) Progressive muscle atrophy with hypokalemic periodic paralysis and calcium channel mutation. Muscle Nerve 37:120–124

    Article  PubMed  CAS  Google Scholar 

  15. Ricker K, Moxley RT, Heine R, Lehmann-Horn F (1994) Myotonia fluctuans. A third type of muscle sodium channel disease. Arch Neurol 51:1095–1102

    PubMed  CAS  Google Scholar 

  16. Ryan DP, Silva MR da, Soong TW et al (2010) Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell 140:88–98

    Article  PubMed  CAS  Google Scholar 

  17. Sansone V, Meola G, Links TP et al (2008) Treatment for periodic paralysis. Cochrane Database Syst Rev 23:CD005045

    Google Scholar 

  18. Stunnenberg BC, Ginjaar HB, Trip J et al (2010) Isolated eyelid closure myotonia in two families with sodium channel myotonia. Neurogenetics 11:257–260

    Article  PubMed  CAS  Google Scholar 

  19. Tawil R, McDermott MP, Brown R et al (2000) Randomized trials of dichlorphenamide in the periodic paralyses. Working Group on Periodic Paralysis. Ann Neurol 47:46–53

    Article  PubMed  CAS  Google Scholar 

  20. Weber MA, Nielles-Vallespin S, Essig M et al (2006) Muscle Na+ channelopathies: MRI detects intracellular 23Na accumulation during episodic weakness. Neurology 67:1151–1158

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jurkat-Rott MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurkat-Rott, K., Lerche, H. & Lehmann-Horn, F. Muskuläre Kanalopathien. Nervenarzt 82, 511–521 (2011). https://doi.org/10.1007/s00115-011-3269-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-011-3269-8

Schlüsselwörter

Keywords

Navigation