Skip to main content
Log in

Paratenic hosts as regular transmission route in the acanthocephalan Pomphorhynchus laevis: potential implications for food webs

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Although trophically transmitted parasites are recognized to strongly influence food-web dynamics through their ability to manipulate host phenotype, our knowledge of their host spectrum is often imperfect. This is particularly true for the facultative paratenic hosts, which receive little interest. We investigated the occurrence and significance both in terms of ecology and evolution of paratenic hosts in the life cycle of the fish acanthocephalan Pomphorhynchus laevis. This freshwater parasite uses amphipods as intermediate hosts and cyprinids and salmonids as definitive hosts. Within a cohort of parasite larvae, usually reported in amphipod intermediate hosts, more than 90% were actually hosted by small-sized fish. We demonstrated experimentally, using one of these fish, that they get infected through the consumption of parasitized amphipods and contribute to the parasite’s transmission to a definitive host, hence confirming their paratenic host status. A better knowledge of paratenic host spectrums could help us to understand the fine tuning of transmission strategies, to better estimate parasite biomass, and could improve our perception of parasite subwebs in terms of host–parasite and predator–parasite links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amin OM, Abdullah SMA, Mhaisen FT (2003) Description of Pomphorhynchus spindletruncatus n. sp. (Acanthocephala: Pomphorhynchidae) from freshwater fishes in northern Iraq, with the erection of a new pomphorhynchid genus, Pyriproboscis n. g., and keys to genera of the Pomphorhynchidae and the species of Pomphorhynchus Monticelli, 1905. Syst Parasitol 54:229–235

    Article  PubMed  Google Scholar 

  • Amundsen PA, Lafferty KD, Knudsen R, Primicerio R, Klemetsen A, Kuris AM (2009) Food web topology and parasites in the pelagic zone of a subarctic lake. J Anim Ecol 78:563–572

    Article  PubMed  Google Scholar 

  • Anderson RC (2000) Nematode parasites of vertebrates their development and transmission, 2nd edn. CABI, Wallingford

    Book  Google Scholar 

  • Anderson RC, Gordon DM (1982) Processes influencing the distribution of parasites numbers within host populations with special emphasis on parasite-induced mortalities. Parasitology 85:373–398

    Article  PubMed  Google Scholar 

  • Anderson RO, Neumann RM (1996) Length, weight, and associated structural indices. In: Murphy BR, Willis DW (eds) Fisheries techniques, 2nd edn. American Fisheries Society Publication, Bethesda, pp 447–481

    Google Scholar 

  • Baldauf SA, Thünken T, Frommen JG, Bakker TCM, Heupel O, Kullmann H (2007) Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours. Int J Parasitol 37:61–65

    Article  PubMed  Google Scholar 

  • Bauer A, Trouvé S, Grégoire A, Bollache L, Cézilly F (2000) Differential influence of Pomphorhynchus laevis (Acanthocephala) on the behaviour of native invader gammarid species. Int J Parasitol 30:1453–1457

    Article  PubMed  CAS  Google Scholar 

  • Bombarová M, Marec F, Nguyen P, Spakulová M (2007) Divergent location of ribosomal genes in chromosomes of fish thorny-headed worms, Pomphorhynchus laevis and Pomphorhynchus tereticollis (Acanthocephala). Genetica 131:141–149

    Article  PubMed  Google Scholar 

  • Brown AF (1986) Evidence for density-dependent establishment and survival of Pomphorhynchus laevis (Müller, 1776) (Acanthocephala) in laboratory-infected Salmo gairdneri Richardson and its bearing on wild populations in Leuciscus cephalus (L.). J Fish Biol 28:659–669

    Article  Google Scholar 

  • Bush AO, Fernandez JC, Esch GW, Seed JR (2001) Parasitism, the diversity and ecology of animal parasites. Cambridge University Press, Cambridge

    Google Scholar 

  • Byers JE (2009) Including parasites in food webs. Trends Parasitol 25:55–57

    Article  PubMed  Google Scholar 

  • Cézilly F, Grégoire A, Bertin A (2000) Conflict between co-occurring manipulative parasites? An experimental study of the joint influence of two acanthocephalan parasites on the behaviour of Gammarus pulex. Parasitology 120:625–630

    Article  PubMed  Google Scholar 

  • Conway Morris S, Crompton DWT (1982) The origins and evolution of the Acanthocephala. Biol Rev 57:85–115

    Article  Google Scholar 

  • Crompton DWT (1985) Reproduction. In: Crompton DWT, Nickol BB (eds) Biology of the Acanthocephala. Cambridge University Press, Cambridge, pp 213–271

    Google Scholar 

  • Düşen S, Oğuz MC (2008) Occurrence of Pomphorhynchus laevis (Acanthocephala) in the Marsh Frog (Rana ridibunda Pallas, 1771), from Turkey. Helminthologia 45:154–156

    Article  Google Scholar 

  • Franceschi N, Bauer A, Bollache L, Rigaud T (2008) The effects of parasite age and intensity on variability in acanthocephalan-induced behavioural manipulation. Int J Parasitol 38:1161–1170

    Article  PubMed  CAS  Google Scholar 

  • Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385

    Article  PubMed  Google Scholar 

  • Johnson PTJ, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA, Poulin R, Thieltges DW (2010) When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol Evol 25:362–371

    Article  PubMed  Google Scholar 

  • Kaldonski N, Perrot-Minnot MJ, Cézilly F (2007) Differential influence of two acanthocephalan parasites on the antipredator behaviour of their common intermediate host. Anim Behav 74:1311–1317

    Article  Google Scholar 

  • Kaldonski N, Perrot-Minnot M-J, Motreuil S, Cézilly F (2008) Infection with acanthocephalans increases the vulnerability of Gammarus pulex (Crustacea, Amphipoda) to non-host invertebrate predators. Parasitology 135:627–632

    Article  PubMed  CAS  Google Scholar 

  • Keith P, Allardi J (2001) Atlas des poissons d’eau douce de France. Patrimoines Naturels 47, Paris

  • Kennedy CR (1999) Post-cyclic transmission in Pomphorhynchus laevis (Acanthocephala). Folia Parasitol 46:111–116

    Google Scholar 

  • Kennedy CR (2006) Ecology of the Acanthocephala. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L, Boch CA, Dobson AP, Dunham EJ, Fredensborg BL, Huspeni TC, Lorda J, Mababa L, Mancini FT, Mora AB, Pickering M, Talhouk NL, Torchin ME, Lafferty DK (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518

    Article  PubMed  CAS  Google Scholar 

  • Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. Proc Natl Acad Sci USA 103:11211–11216

    Article  PubMed  CAS  Google Scholar 

  • Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PTJ, Kuris AM, Marcogliese DJ, Martinez ND, Memmott J, Marquet PA, McLaughlin JP, Mordecai EA, Pascual M, Poulin R, Thieltges DW (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546

    Article  PubMed  Google Scholar 

  • Lagrue C, Kaldonski N, Perrot-Minnot MJ, Motreuil S, Bollache L (2007) Modification of hosts’ behavior by a parasite: field evidence for adaptive manipulation. Ecology 88:2839–2847

    Article  PubMed  Google Scholar 

  • Le Cren ED (1951) The length–weight relationship and seasonal cycle in gonad weight and condition in perch (Perca fluviatilis). J Anim Ecol 20:201–219

    Article  Google Scholar 

  • Marcogliese DJ, Cone DK (1997) Food webs: a plea for parasites. Trends Ecol Evol 12:320–325

    Article  PubMed  CAS  Google Scholar 

  • Maynard BJ, Wellnitz TA, Zanini N, Wright WG, Dezfuli BS (1998) Parasite-altered behavior in a crustacean intermediate host: field and laboratory studies. J Parasitol 84:1102–1106

    Article  PubMed  CAS  Google Scholar 

  • McCahon CP, Maund SJ, Poulton MJ (1991) The effect of the acanthocephalan parasite (Pomphorhynchus laevis) on the drift of its intermediate host (Gammarus pulex). Freshwat Biol 25:507–513

    Article  Google Scholar 

  • Morand S, Robert F, Connors VA (1995) Complexity in parasite life cycles: population biology of cestodes in fish. J Anim Ecol 64:256–264

    Article  Google Scholar 

  • Parker GA, Ball MA, Chubb JC (2009) To grow or not to grow? Intermediate and paratenic hosts as helminth life cycle strategies. J Theor Biol 258:135–147

    Article  PubMed  CAS  Google Scholar 

  • Perrot-Minnot MJ (2004) Larval morphology, genetic divergence, and contrasting levels of host manipulation between forms of Pomphorhynchus laevis (Acanthocephala). Int J Parasitol 34:45–54

    Article  PubMed  Google Scholar 

  • Robert F, Renaud F, Mathieu E, Gabrion C (1988) Importance of the paratenic host in the biology of Bothriocephalus gregarius (Cestoda, Pseudophyllidea) a parasite of the turbot. Int J Parasitol 18:611–621

    Article  PubMed  CAS  Google Scholar 

  • Rousset F, Thomas F, De Meeus T, Renaud F (1996) Inference of parasite-induced host mortality from distributions of parasite loads. Ecology 77:2203–2211

    Article  Google Scholar 

  • Schmidt GD (1985) Development and life cycles. In: Crompton DWT, Nickol BB (eds) Biology of the Acanthocephala. Cambridge University Press, Cambridge, pp 273–286

    Google Scholar 

  • Seppälä O, Jokela J (2008) Host manipulation as a parasite transmission strategy when manipulation is exploited by non-host predators. Biol Lett 4:663–666

    Article  PubMed  Google Scholar 

  • Siddall R, Sures B (1998) Uptake of lead by Pomphorhynchus laevis cystacanths in Gammarus pulex and immature worms in chub (Leuciscus cephalus). Parasitol Res 84:573–577

    Article  PubMed  CAS  Google Scholar 

  • Tain L, Perrot-Minnot M-J, Cézilly F (2006) Altered host behaviour and brain serotonergic activity caused by acanthocephalans: evidence for specificity. Proc R Soc Lond B 273:3039–3045

    Article  CAS  Google Scholar 

  • Thomas F, Renaud F, Rousset F, Cézilly F, De Meeûs T (1995) Differential mortality of two closely related host species induced by one parasite. Proc R Soc Lond B 260:349–352

    Article  Google Scholar 

  • Thomas F, Adamo S, Moore J (2005) Parasitic manipulation: where are we and where should we go? Behav Process 68:185–199

    Article  Google Scholar 

  • Wellnitz T, Giari L, Maynard B, Dezfuli BS (2003) A parasite spatially structures its host population. Oikos 100:263–268

    Article  Google Scholar 

  • Wheeler A (1978) I. melas and I. nebulosus: the North American catfishes in Europe. J Fish Biol 12:435–439

    Article  Google Scholar 

Download references

Acknowledgments

We thank Marianne Duployer, Benjamin Gaudillat, Emilie Guyonnet, Clément Lagrue, and Marion Salignon for help in field and laboratory investigations. This study was funded in part by a grant from the ANR (BLAN07-3-183300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Médoc.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Médoc, V., Rigaud, T., Motreuil, S. et al. Paratenic hosts as regular transmission route in the acanthocephalan Pomphorhynchus laevis: potential implications for food webs. Naturwissenschaften 98, 825 (2011). https://doi.org/10.1007/s00114-011-0831-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-011-0831-y

Keywords

Navigation