Skip to main content

Advertisement

Log in

Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Several soil microorganisms colonizing roots are known to naturally promote the health of plants by controlling a range of plant pathogens, including bacteria, fungi, and nematodes. The use of theses antagonistic microorganisms, recently named plant-probiotics, to control plant-pathogenic fungi is receiving increasing attention, as they may represent a sustainable alternative to chemical pesticides. Many years of research on plant-probiotic microorganisms (PPM) have indicated that fluorescent pseudomonads producing antimicrobial compounds are largely involved in the suppression of the most widespread soilborne pathogens. Phenotype and genotype analysis of plant-probiotic fluorescent pseudomonads (PFP) have shown considerable genetic variation among these types of strains. Such variability plays an important role in the rhizosphere competence and the biocontrol ability of PFP strains. Understanding the mechanisms by which genotypic and phenotypic diversity occurs in natural populations of PFP could be exploited to choose those agricultural practices which best exploit the indigenous PFP populations, or to isolate new plant-probiotic strains for using them as inoculants. A number of different methods have been used to study diversity within PFP populations. Because different resolutions of the existing microbial diversity can be revealed depending on the approach used, this review first describes the most important methods used for the assessment of fluorescent Pseudomonas diversity. Then, we focus on recent data relating how differences in genotypic and phenotypic diversity within PFP communities can be attributed to geographic location, climate, soil type, soil management regime, and interactions with other soil microorganisms and host plants. It becomes evident that plant-related parameters exert the strongest influence on the genotypic and phenotypic variations in PFP populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagot N, Nybroe O, Nielsen P, Johnsen K (2001) An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media. Appl Environ Microbiol 67:5233–5239

    PubMed  CAS  Google Scholar 

  • Acea M, Alexander M (1998) Growth and survival of bacteria introduced into carbon amended soil. Soil Biol Biochem 20:703–709

    Google Scholar 

  • Adams PD, Kloepper JW (2002) Effect of host genotype on indigenous bacterial endophytes of cotton (Gossypium hirsutum L.). Plant Soil 240:181–198

    CAS  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

    CAS  Google Scholar 

  • Baath E, Anderson TH (2003) Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem 35:955–963

    CAS  Google Scholar 

  • Baker KF, Cook RJ (1974) Biological control of plant pathogens. In: Freeman WH (ed) Freeman, San Francisco, CA (reprinted in 1982, the American Phytopathological Society, St Paul, MN)

  • Batzli J, Zimpfer J, Huguet V, Smyth C, Fernandez M, Dawson J (2004) Distribution and abundance of infective, soilborne Frankia and host symbionts Shepherdia, Alnus, and Myrica in a sand dune ecosystem. Can J Bot 82:700–709

    Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2002) Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    PubMed  CAS  Google Scholar 

  • Bergsma-Vlami M, Prins ME, Raaijmakers JM (2005a) Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microbiol Ecol 52:59–69

    CAS  Google Scholar 

  • Bergsma-Vlami M, Prins ME, Staats M, Raaijmakers JM (2005b) Assessment of genotypic diversity of antibiotic-producing Pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis. Appl Environ Microbiol 71:993–1003

    CAS  Google Scholar 

  • Bianciotto V, Bonfante P (2002) Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. Antonie Van Leeuwenhoek 81:365–371

    PubMed  CAS  Google Scholar 

  • Biolog (1993) Manual for the identification of bacteria. Biolog Inc., Hayward, CA

    Google Scholar 

  • Bosco M, Lumini E, Normand P (1996) PCR-RFLP direct fingerprinting of uncultured Frankia microsymbiont from Dryas drummondii nodules. Ann Microbiol Enzim 46:115–123

    CAS  Google Scholar 

  • Braker G, Ayala-del-Rio HL, Devol AH, Fesefeldt A, Tiedje JM (2001) Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific Northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase (nirS) and 16S rRNA genes. Appl Environ Microbiol 67:1893–1901

    PubMed  CAS  Google Scholar 

  • Buyer JS, Drinkwater LE (1997) Comparison of substrate utilization assay and fatty acid analysis of soil microbial communities. J Microbiol Methods 30:3–11

    CAS  Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methé BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315

    PubMed  Google Scholar 

  • Chen Y, Senesi N, Schnitzer M (1977) Information provided on humic substances by E4/E6 ratios. Soil Sci Soc Am J 41:352

    Article  CAS  Google Scholar 

  • Chowdhury MAH, Kouno K, Ando T, Nagaoka T (2000) Microbial biomass, S mineralization and S uptake by African millet from soil amended with various composts. Soil Biol Biochem 32:845–852

    CAS  Google Scholar 

  • Cook RJ, Baker KF (1983) In: (ed) The nature and practice of biological control of plant pathogens. The American Phytopathology Society, St. Paul, MN

  • Curl EA, Truelove B (eds) (1986) The rhizophere. Springer, New York, p 288

  • Dawson SL, Fry JC, Dancer BN (2002) A comparative evaluation of five typing techniques for determining the diversity of fluorescent pseudomonads. J Microbiol Meth 50:9–22

    CAS  Google Scholar 

  • De La Fuente L, Mavrodi DV, Landa BB, Thomashow LS, Weller DM (2006) phlD-based genetic diversity and detection of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. FEMS Microbiol Ecol 56:64–78

    PubMed  Google Scholar 

  • De Leij FAAM, Dixon-Hardy JE, Lynch JM (2002) Effect of 2,4-diacetylphloroglucinol-producing and non-producing strains of Pseudomonas fluorescens on root development of pea seedlings in three different soil types and its effect on nodulation by Rhizobium. Biol Fert Soils 35:114–121

    Google Scholar 

  • de Souza JT, Raaijmakers JM (2003) Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol Ecol 43:21–34

    PubMed  Google Scholar 

  • de Souza JT, Weller DM, Raaijmakers JM (2003) Frequency, diversity and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in Dutch take-all decline soils. Phytopathology 93:54–63

    PubMed  Google Scholar 

  • Di Cello F, Bevivino A, Chiarini L, Fani R, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages. Appl Environ Microbiol 63:4485–4493

    PubMed  Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Eastmond PJ, van Dijken AJH, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JDG, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate syntase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:225–235

    PubMed  CAS  Google Scholar 

  • Ellis RJ, Timms-Wilson TM, Bailey MJ (2000) Identification of conserved traits in fluorescent pseudomonads with antifungal activity. Environ Microbiol 2:274–284

    PubMed  CAS  Google Scholar 

  • Engelhard M, Hurek T, Reinhold-Hurek B (2000) Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environ Microbiol 2:131–141

    PubMed  CAS  Google Scholar 

  • Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210–220

    PubMed  CAS  Google Scholar 

  • Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with the Douglas-fir–Laccaria bicolor mycorrhizosphere. Appl Environ Microbiol 63:1852–1860

    PubMed  CAS  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    PubMed  Google Scholar 

  • Frostegard A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet S (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed  CAS  Google Scholar 

  • Garbeva P, van Veen JA, van Elsas JD (2004a) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270

    CAS  Google Scholar 

  • Garbeva P, Voesenek K, van Elsas JD (2004b) Detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments. Soil Biol Biochem 36:1453–1463

    CAS  Google Scholar 

  • Garbeva P, Postma J, van Veen JA, van Elsas JD (2006) Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ Microbiol 8:233–246

    PubMed  CAS  Google Scholar 

  • Georgakopoulos DG, Hendson M, Panopoulos NJ, Schroth MN (1994) Analysis of expression of a phenazine biosynthesis locus of Pseudomonas aureofaciens PGS12 on seeds with a mutant carrying a phenazine biosynthesis locus ice nucleation reporter gene fusion. Appl Environ Microbiol 60:4573–4579

    PubMed  CAS  Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33:410–415

    Google Scholar 

  • Gould W, Hagedorn C, Bardinelli T, Zablotowicz R (1985) New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Appl Environ Microbiol 49:28–32

    PubMed  CAS  Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    CAS  Google Scholar 

  • Gu YH, Mazzola M (2003) Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl Soil Ecol 24:57–72

    Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Peudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    CAS  Google Scholar 

  • Hammer PE, Burd W, Hill DS, Ligon JM, van Pee KH (1999) Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains. FEMS Microbiol Lett 180:39–44

    PubMed  CAS  Google Scholar 

  • Heijnen CE, Hok-A-Hin CH, van Veen JA (1992) Improvements to use of bentonine clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol Biochem 24:533–538

    Google Scholar 

  • Heijnen CE, Chenu C, Robert M (1993) Micro-morphological studies on clay-amended and unamended loamy sand, relating survival of introduced bacteria and soil structure. Geoderma 56:195–207

    Google Scholar 

  • Hoper H, Steinberg C, Alabouvette C (1995) Involvement of clay type and pH in the mechanisms of soil suppressiveness to Fusarium-wilt of Flax. Soil Biol Biochem 27:955–967

    CAS  Google Scholar 

  • Hutsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition—an important source for carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407

    CAS  Google Scholar 

  • Jaeger CH III, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    PubMed  CAS  Google Scholar 

  • Johnsen K, Enger Ø, Jacobsen CS, Thirup L, Torsvik V (1999) Quantitative selective PCR of 16S ribosomal DNA correlates well with selective agar plating in describing population dynamics of indigenous Pseudomonas spp. in soil hot spots. Appl Environ Microbiol 65:1786–1788

    PubMed  CAS  Google Scholar 

  • Keel C, Weller DM, Natsch A, Défago G, Cook RJ, Thomashow LS (1996) Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 62:552–563

    PubMed  CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Landa BB, Cachinero-Diaz JM, Lemanceau P, Jimenez-Diaz RM, Alabouvette C (2002a) Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum. Can J Microbiol 48:971–985

    CAS  Google Scholar 

  • Landa BB, Mavrodi OV, Raaijmakers JM, Gardener BBM, Thomashow LS, Weller DM (2002b) Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl Environ Microbiol 68:3226–3237

    CAS  Google Scholar 

  • Landa BB, Mavrodi OV, Schroeder KL, Allende-Molar R, Weller DM (2006) Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. In two soils after a century of wheat and flax monoculture. FEMS Microbiol Ecol 55:351–368

    CAS  Google Scholar 

  • Latour X, Philippot L, Corberand T, Lemanceau P (1999) The establishment of an introduced community of fluorescent pseudomonads in the soil and in the rhizosphere is affected by the soil type. FEMS Microbiol Ecol 30:163–170

    PubMed  CAS  Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras J-M, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.) on the diversity of soilborne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012

    PubMed  CAS  Google Scholar 

  • Lumini E, Bosco M (1999) Polymerase chain reaction-restriction fragment length polymorphisms for assessing and increasing biodiversity of Frankia culture collections. Can J Bot 77:1261–1269

    CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    CAS  Google Scholar 

  • Mäder P, Fliebach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    PubMed  Google Scholar 

  • Martin-Laurent F, Philippot L, Hallet S, Chaussod R, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354–2359

    PubMed  CAS  Google Scholar 

  • Matsuo T, Hoshikawa K (1993) Science of the rice plant, vol 1: Morphology. Food and Agriculture Policy Research Center, Tokyo

  • Mavingui P, Laguerre G, Berge O, Heulin T (1992) Genetic and phenotypic diversity of Bacillus polymyxa in soil and in the wheat rhizosphere. Appl Environ Microbiol 58:1894–1903

    PubMed  CAS  Google Scholar 

  • Mavrodi OV, McSpadden Gardener B, Mavrodi DV, Bonsall RF, Weller DM, Thomashow LS (2001) Genetic diversity of phlD from 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. Phytopathology 91:35–43

    CAS  PubMed  Google Scholar 

  • Mazzola M (2002) Mechanisms of natural soil suppressiveness to soilborne diseases. Antonie Van Leeuwenhoek 81:557–564

    PubMed  CAS  Google Scholar 

  • Mazzola M, Gu YH (2002) Wheat genotype-specific induction of soil microbial communities suppressive to Rhizoctonia solani AG 5 and AG 8. Phytopathology 92:1300–1307

    PubMed  Google Scholar 

  • Mazzola M, Funnell DL, Raaijmakers JM (2004) Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microb Ecol 48:338–348

    PubMed  CAS  Google Scholar 

  • McCaig AE, Grayston SJ, Prosser JI, Glover LA (2001) Impact of cultivation on characterisation of species composition of soil bacterial communities. FEMS Microbiol Ecol 35:37–48

    PubMed  CAS  Google Scholar 

  • McCray Batzli J, Graves WR, van Berkum P (1992) Diversity among rhizobia effective with Robinia pseudoacacia L. Appl Environ Microbiol 58:2137–2143

    PubMed  CAS  Google Scholar 

  • McSpadden Gardener BB, Schroeder KL, Kalloger SE, Raaijmakers JM, Thomashow LS, Weller DM (2000) Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl Environ Microbiol 66:1939–1946

    PubMed  CAS  Google Scholar 

  • Meyer JR, Linderman RG (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196

    Google Scholar 

  • Neal JL, Larson RI, Atkinson TG (1973) Changes in rhizosphere populations of selected physiological groups of bacteria related to substitution of specific pairs of chromosomes in spring wheat. Plant Soil 39:209–212

    Google Scholar 

  • Nielsen MN, Sorensen J, Fels J, Pedersen HC (1998) Secondary metabolite- and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64:3563–3569

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sorensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87:80–90

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sorensen J (2000) Structure, production characteristics and fungal antagonism of tensin–a new cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Sorensen D, Tobiasen C, Andersen JB, Christophersen C, Givskov M, Sorensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microb 68:3416–3423

    CAS  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Défago G (2001) Biotic factors affecting expression of the 2,4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881

    CAS  PubMed  Google Scholar 

  • Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82:279–289

    PubMed  CAS  Google Scholar 

  • Ownley BH, Duffy BK, Weller DM (2003) Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens. Appl Environ Microbiol 69:3333–3343

    PubMed  CAS  Google Scholar 

  • Paget E, Jocteur Monrozier L, Simonet P (1992) Adsorption of DNA on clay minerals: protection against DNase I and influence on gene transfer. FEMS Microbiol Lett 97:31–40

    CAS  Google Scholar 

  • Palleroni NJ (1993) Pseudomonas. classification. Antonie van Leeuwenhoek 64:231–251

    PubMed  Google Scholar 

  • Pankhurst CE, Yu S, Hawke BG, Harch BD (2001) Capacity of fatty acid profiles and substrate utilization patterns to describe differences in soil microbial communities associated with increased salinity or alkalinity at three locations in South Australia. Biol Fertil Soils 33:204–217

    CAS  Google Scholar 

  • Philippot L, Hallin S (2005) Finding the missing link between diversity and activity using denitrifying bacteria as a model functional community. Curr Opin Microbiol 8:234–239

    PubMed  CAS  Google Scholar 

  • Picard C, Bosco M (2003a) Genetic diversity of phlD gene from 2,4-diacetylphloroglucinol-producing Pseudomonas spp. strains from the maize rhizosphere. FEMS Microbiol Lett 219:167–172

    CAS  Google Scholar 

  • Picard C, Bosco M (2003b) Soil antimony pollution and plant growth stage affect the biodiversity of auxin-producing bacteria isolated from the rhizosphere of Achillea ageratum L. FEMS Microbiol Ecol 46:73–80

    CAS  Google Scholar 

  • Picard C, Bosco M (2005) Maize heterosis affects the structure and dynamics of indigenous rhizospheric auxins-producing Pseudomonas populations. FEMS Microbiol Ecol 53:349–357

    PubMed  CAS  Google Scholar 

  • Picard C, Bosco M (2006) Heterozygosis drives maize hybrids to select elite 2,4-diacethylphloroglucinol-producing Pseudomonas strains among resident soil populations. FEMS Microbiol Ecol 58:193–204

    PubMed  CAS  Google Scholar 

  • Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P (1992) Detection and enumeration of bacteria in soil by direct DNA Extraction and polymerase chain reaction. Appl Environ Microbiol 58:2717–2722

    PubMed  CAS  Google Scholar 

  • Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955

    PubMed  CAS  Google Scholar 

  • Picard C, Frascaroli E, Bosco M (2004a) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing rhizobacteria are differentially affected by the genotype of two maize inbred lines and their hybrid. FEMS Microbiol Ecol 49:207–215

    CAS  Google Scholar 

  • Picard C, Nesme X, Simonet P (2004b) Detection and enumeration of soil bacteria using the MPN-PCR technique. In: Kowalchuk GA, De Bruijin FJ, Head IM, Akkermans AA, Van Elsas JD (eds) Molecular microbial ecology manual. 2nd edn. Kluwer, Dordrecht, pp 483–492

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11:144–152

    CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1–96. Appl Environ Microbiol 67:2545–2554

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM, Thomashow LS (1997) Frequency of antibiotic-producing Pseudomonas spp. in natural environments.. Appl Environ Microbiol 63:881–887

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2,4 diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475

    CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    PubMed  CAS  Google Scholar 

  • Ramette A, Moenne-Loccoz Y, Défago G (2001) Polymorphism of the polyketide synthase gene phlD in biocontrol fluorescent pseudomonads producing 2,4-diacetylphloroglucinol and comparison of phlD with plant polyketide synthases. Mol Plant Microbe Interact 14:639–652

    PubMed  CAS  Google Scholar 

  • Ramette A, Moenne-Loccoz Y, Défago G (2003) Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conductive to tobacco black root rot. FEMS Microbiol Ecol 44:35–43

    CAS  PubMed  Google Scholar 

  • Ramette A, Moenne-Loccoz Y, Défago G (2006) Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conductive to Thielaviopsis basicola-mediated black root rot of tobacco. FEMS Microbiol Ecol 55:369–381

    PubMed  CAS  Google Scholar 

  • Recorbet G, Picard C, Normand P, Simonet P (1993) Kinetics of chromosomal DNA persistence of genetically-engineered Escherichia coli introduced into soil. Appl Environ Microbiol 59:4289–4294

    PubMed  CAS  Google Scholar 

  • Rengel Z (2002) Breeding for better symbiosis. Plant and Soil 245:147–162

    CAS  Google Scholar 

  • Rodriguez-Kabana R, Canullo GH (1992) Cropping systems for the management of phytonematodes. Phytoparasitica 20:211–224

    Google Scholar 

  • Rovira AD, Wildermuth GB (1981) The nature and mechanisms of suppression. In: Asher MJC, Shipton P (eds) Biology and control of take-all. Academic, London, pp 385–415

    Google Scholar 

  • Sarniguet A, Lucas P, Lucas M (1992) Relationship between take-all, soil conduciveness to the disease, populations of fluorescent pseudomonads and nitrogen fertilizers. Plant Soil 145:17–27

    Google Scholar 

  • Scala DJ, Kerkhof LJ (2000) Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 66:1980–1986

    PubMed  CAS  Google Scholar 

  • Schilling G, Gransee A, Deubel A, Lezovic, Ruppel S (1998) Phosphorus availability, root exudates, and microbial activity in the rhizosphere. Z. Pflanzenernähr. Bodenk 161:465–478

    CAS  Google Scholar 

  • Schimel J (1995) Ecosystem consequences of microbial diversity and community structure. In: Chapin FS, Körner C (eds) Arctic and alpine diversity: patterns, causes, and ecosystem consequences. Springer, Berlin, pp 239–254

    Google Scholar 

  • Schippers B (1992) Prospects for management of natural suppressiveness to control soil-borne pathogens. In: Tjamos EC, Papavizas GC, Cook RJ (eds) Biological control of plant diseases. Plenum Press, New York, USA, pp 1–12

    Google Scholar 

  • Seldin L, Rosado AS, da Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998) Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non root-associated soil from maize planted in two different Brazilian soils. Appl Environ Microbiol 64:3860–3868

    PubMed  CAS  Google Scholar 

  • Semenov AM, van Bruggen AHC, Zelenev VV (1999) Moving waves of bacterial populations and total organic carbon along roots of wheat. Microb Ecol 37:116–128

    PubMed  CAS  Google Scholar 

  • Sharifi-Tehrani A, Zala M, Natsch A, Moenne-Loccoz Y, Défago G (1998) Biocontrol of soil-borne fungal plant disease by 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas with different restriction profile of amplified 16S rDNA. Eur J Plant Pathol 104:631–643

    CAS  Google Scholar 

  • Simon HM, Smith KP, Dodsworth JA, Guenthner B, Handelsman J, Goodman RM (2001) Influence of tomato genotype on growth of inoculated and indigenous bacteria in the spermosphere. Appl Environ Microbiol 67:514–520

    PubMed  CAS  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere–microbial interactions: opportunities and limitations. TRENDS Microbiol 12:386–393

    PubMed  CAS  Google Scholar 

  • Smiley RW (1978) Antagonists of Gaeumannomyces graminis from the rhizoplane of wheat in soils fertilized with ammonium vs. nitrate-nitrogen. Soil Biol Biochem 10:169–174

    CAS  Google Scholar 

  • Smith KP, Handelsman J, Goodman RM (1999) Genetic basis in plants for interactions with disease-suppressive bacteria. PNAS 69:4786–4790

    Google Scholar 

  • Steenwerth KL, Jackson LE, Calderon FJ, Stromberg MR, Scow KM (2002) Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol Biochem 34:1599–1611

    CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406:959–964

    PubMed  CAS  Google Scholar 

  • Sturz AV, Matheson BG, Arsenault W, Kimpinski J, Christie BR (2001) Weeds as a source of plant growth promoting rhizobacteria in agricultural soils. Can J Microbiol 47:1013–1024

    PubMed  CAS  Google Scholar 

  • Stutz EW, Défago G, Kern H (1986) Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185

    Google Scholar 

  • Thirup L, Johnsen K, Winding A (2001) Succession of indigenous Pseudomonas spp. and Actinomycetes on barley roots affected by the antagonistic strain Pseudomonas fluorescens DR54 and the fungicide Imazalil. Appl Environ Microbiol 67:1147–1153

    PubMed  CAS  Google Scholar 

  • Thomashow LS (1996) Biological control of plant root pathogens. Curr Opin Biotechnol 7:343–347

    PubMed  CAS  Google Scholar 

  • Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities: a review. J Indust Microbiol Biotech 17:170–178

    CAS  Google Scholar 

  • Tu C, Ristaino JB, Hu S (2006) Soil microbial biomass and activity in organic tomato farming systems: Effects of organic inputs and straw mulching. Soil Biol Biochem 38:247–255

    CAS  Google Scholar 

  • van Bruggen AHC (1995) Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Dis 79:976–983

    Article  Google Scholar 

  • van Egeraat AWSM (1975) Exudation of ninhydrin-positive compounds by pea-seedling roots: a study of the sites of exudation and the composition of the exudates. Plant and Soil 42:37–47

    Google Scholar 

  • van Elsas JD, Dijkstra AF, Govaert JM, van Veen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field microplots. FEMS Microbiol Ecol 38:151–160

    Google Scholar 

  • van Elsas JD, Duarte GE, Rosado AS, Smalla K (1998) Microbiological and molecular methods for monitoring microbial inoculants and their effects in the environment. J Microbiol Methods 32:133–154

    Google Scholar 

  • van Elsas JD, Garbeva P, Salles J (2002) Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. Biodegradation 13:29–40

    PubMed  Google Scholar 

  • Vincent M, Harrison L, Brackin J, Kovacevich P, Murkerji P, Weller DM, Pierson E (1991) Genetic analysis of the antifungal activity of a soil-borne Pseudomonas aureofaciens strain. Appl Environ Microbiol 57:2928–2934

    PubMed  CAS  Google Scholar 

  • Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial composition to function in a tropical soil. Soil Biol Biochem 32:1837–1846

    CAS  Google Scholar 

  • Wang C, Ramette A, Punjasamarnwong P, Zala M, Natsch A, Moenne-Loccoz Y, Défago G (2001) Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin. FEMS Microbiol Ecol 37:105–116

    CAS  Google Scholar 

  • Weller DM (1983) Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all. Phytopathology 73:1543–1553

    Article  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms. Biotechnology and the release of GMO. VCH-Verlagsgesellschaft mbH, Weinheim, Germany, pp 1–18

    Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil supressiveness to plant pathogens. Annu Rev phytopathol 40:309–348

    PubMed  CAS  Google Scholar 

  • Workneh F, van Bruggen AHC, Drinkwater LE, Shennan C (1993) Variables associated with corky root and Phytophthora root rot of tomatoes in organic and conventional farms. Phytopathology 83:581–589

    Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Barney Sandell for English revision, and Giulio Bosco for proof reading. We are grateful to Lou, Bernie and Athos (GMT Foundation) for scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Picard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picard, C., Bosco, M. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots. Naturwissenschaften 95, 1–16 (2008). https://doi.org/10.1007/s00114-007-0286-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0286-3

Keywords

Navigation