Skip to main content
Log in

Der Rotationsstabile Schraubanker mit winkelstabiler Stützplatte (RoSA/TAP)

Erste klinische Evaluation bei instabilen trochantären Frakturen

The rotationally stable screw-anchor with trochanteric stabilizing plate (RoSA/TSP)

First results in unstable trochanteric femur fractures

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Das neuentwickelte extramedulläre Rotationsstabile Schraubanker-System (RoSA) ist einzigartig, indem es bei instabilen pertrochantären Femurfrakturen die Vorteile von Schraube und Klinge kombiniert. Mittels winkelstabiler Abstützplatte (TAP) wird nach Kompressionserzeugung unter Nutzung von Antiteleskopierschrauben das Nachsintern im Frakturbereich limitiert und die Stabilität erhöht.

Fragestellung

Ziel dieser prospektiven Kohortenstudie war die Evaluation des RoSA/TAP hinsichtlich der mechanischen Komplikationsrate und postoperativer Sinterungsvorgänge.

Methodik

Es wurden 80 instabile trochantäre Frakturen unter Verwendung des Rotationsstabilen Schraubankers (Königsee Implantate GmbH, Allendorf, Deutschland) mit additiver anatomisch geformter winkelstabiler Trochanterabstützplatte (TAP) versorgt. Je nach Instabilitätsgrad wurden, nach intraoperativer Erzeugung eines innigen Knochenkontaktes, durch das Kopfteil der Abstützplatte zusätzlich Antiteleskopierschrauben (AT-Schrauben, variabel winkelstabil, n = 1–4) konvergierend zum Kraftträger bis in das Hüftkopfzentrum eingebracht. Die postoperative Gleitstrecke des Schraubankers wurde radiologisch gemessen und die knöcherne Heilung 6–10 Wochen und 6–10 Monate postoperativ beurteilt.

Ergebnisse

Die Gleitstrecke des Schraubankers in der Gleithülsenplatte lag beim Follow-up bei den 61 (76 %) Patienten nach 6–10 Monaten bei 2mm. Insgesamt wurden 6 (8 %) ungeplante und 3 (4 %) geplant präventive Revisionseingriffe durchgeführt. Während 1/3 (4 %) der Re-Operationen aufgrund operationstechnischer Fehler in der Primär-OP erfolgten, wurden 2/3 der Eingriffe (8 %) aufgrund von knöchernen Heilungsverzögerungen (3× Pseudarthrose, 3× geplante Dynamisierungen) durchgeführt. Die Krankenhausmortalität betrug 3 % (n = 2).

Diskussion

Diese erste klinische Evaluationsstudie des Rotationsstabilen Schraubankers (RoSA/TAP) verifiziert dieses extramedulläre Implantat bei instabilen trochantären Frakturen als klinisch vielversprechend. Die Rigidität des Konstruktes stellt den Operateur vor Herausforderungen, kann aber bei Revisionsoperationen von Nutzen sein.

Abstract

Background

In unstable trochanteric fractures, the extramedullary rotationally stable screw-anchor (RoSA) combines the benefits of the load and rotational stability of the blade with the advantages of the screw (pull-out resistance, compression capability) in a single load carrier, and was designed to prevent femoral neck shortening by using an additional locked trochanteric stabilizing plate (TSP).

Objectives

The aim of the current prospective cohort study was the clinical evaluation of the RoSA/TSP system regarding the mechanical re-operation rate and the amount of postoperative femoral neck shortening.

Methods

From September 2011 to January 2014 80 patients with unstable trochanteric fractures underwent internal extramedullary fixation with the RoSA/TSP (Königsee Implantate GmbH, Allendorf, Germany). Due to fracture stability and after induction of compression, additional long locked antitelescoping screws (AT, n = 1–4) were placed reaching the femoral head. Radiological (femoral neck shortening) and clinical re-examination of patients (n = 61) was performed 6–10 weeks and 6–10 months later.

Results

In the 61 re-examined patients (76 %) femoral neck shortening was very low with 2 mm 6–10 months after operation. Re-operations occurred in 8 % (n = 6) and in 4 % (n = 3) as prophylactic surgical intervention. Whereas one-third (4 %) of re-operations occurred due to iatrogenic surgical problems from the first operation two-thirds of patients (8 %) had a re-operation due to delay of bone union (3× nonunion, 3 planned removals of AT-screws to improve healing). The in-hospital mortality was 3 % (n = 2).

Conclusions

The fixation of unstable trochanteric femur fractures using the RoSA/TSP in a first clinical setting led to a great primary stability, with significant advantages with regard to limited femoral neck shortening. However, the rigidity of the construct with its consequences regarding bone healing can be challenging for the surgeon. Nevertheless, in some cases of revision it could be beneficial for stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Altner PC (1982) Reasons for failure in treatment of intertrochanteric fractures. Orthop Rev 11:117

    Google Scholar 

  2. Babst R, Renner N, Biedermann M et al (1998) Clinical results using the trochanter stabilizing plate (TSP): The modular extension of the dynamic hip screw (DHS) for internal fixation of selected unstable intertrochanteric fractures. J Orthop Trauma 12(6):392–399

    Article  CAS  PubMed  Google Scholar 

  3. Barton TM, Gleeson R, Topliss C et al (2010) A comparison of the long gamma nail with the sliding hip screw for the treatment of AO/OTA 31-A2 fractures of the proximal part of the femur: a prospective randomized trial. J Bone Joint Surg Am 92(4):792–798

    Article  PubMed  Google Scholar 

  4. Baumgaertner M, Curtin S, Lindskog D, Keggi J (1995) The value of the tip-apex distance in predicting failure of fixation of pertrochanteric fractures of the hip. J Bone Joint Surg Am 77(7):1058–1056

    Article  CAS  PubMed  Google Scholar 

  5. Bong MR, Kummer FJ, Koval KJ et al (2007) Intramedullary nailing of the lower extremity: biomechanics and biology. J Am Acad Orthop Surg 15(2):97–106

    Article  PubMed  Google Scholar 

  6. Bong MR, Patel V, Lesaka K et al (2004) Comparison of a sliding hip screw with a trochanteric lateral support plate to an intramedullary hip screw for fixation of unstable intertrochanteric hip fractures: a cadaver study. J Trauma 56(4):791–794

    Article  PubMed  Google Scholar 

  7. Bonnaire F, Lein T, Bula P (2011) Trochanteric femoral fractures: anatomy, biomechanics and choice of implants. Unfallchirurg 114(6):491–500

    Article  CAS  PubMed  Google Scholar 

  8. Curtis MJ, Jinnah RH, Wilson V et al (1994) Proximal femoral fractures: a biomechanical study to compare intramedullary and extramedullary fixation. Injury 25(2):99–104

    Article  CAS  PubMed  Google Scholar 

  9. Dimon JH, Hughston JC (1967) Unstable intertrochanteric fractures of the hip. J Bone Joint Surg Am 49:440–450

    Article  CAS  PubMed  Google Scholar 

  10. Gardner MJ, Briggs SM, Kopjar B et al (2007) Radiographic outcomes of intertrochanteric hip fractures treated with the trochanteric fixation nail. Injury 38:1189–1196

    Article  PubMed  Google Scholar 

  11. Goffin JM, Pankaj P, Simpson AH (2014) A computational study on the effect of fracture intrusion distance in three- and four-part trochanteric fractures treated with Gamma nail and sliding hip screw. J Orthop Res 32(1):39–45

    Article  PubMed  Google Scholar 

  12. Gotfried Y (2004) The lateral trochanteric wall: a key element in the reconstruction of unstable pertrochanteric hip fractures. Clin Orthop Relat Res 425:82–86

    Article  Google Scholar 

  13. Haynes RC, Poll RG, Miles AW, Weston RB (1997) Failure of femoral head fixation: a cadaveric analysis of lag screw cut-out with the gamma locking nail and AO dynamic hip screw. Injury 28(5–6):337–341

    Article  CAS  PubMed  Google Scholar 

  14. Janzing HM, Houben BJ, Brandt SE et al (2002) The Gotfried PerCutaneous Compression Plate versus the Dynamic Hip Screw in the treatment of pertrochanteric hip fractures: minimal invasive treatment reduces operative time and postoperative pain. J Trauma 52(2):293–298

    PubMed  Google Scholar 

  15. Kammerlander C, Doshi H, Gebhard F et al (2014) Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 134(3):343–349

    Article  CAS  PubMed  Google Scholar 

  16. Knobe M (2013) Komplikationen bei der pertrochantären Femurfraktur: Spannungsbogen zwischen Frakturinstabilität, chirurgischer Präzision und innovativem Implantatdesign. Aachen Techn Hochsch, Habil-Schr. http://d-nb.info/1041555083. Zugegriffen: 10.04.2015

    Google Scholar 

  17. Knobe M, Drescher W, Heussen N et al (2012) Is helical blade nailing superior to locked minimally invasive plating in unstable pertrochanteric fractures? Clin Orthop Relat Res 470(8):2302–2312

    Article  PubMed  PubMed Central  Google Scholar 

  18. Knobe M, Gradl G, Ladenburger A et al (2013) Unstable intertrochanteric femur fractures: Is there a consensus on definition and treatment in Germany? Clin Orthop Relat Res 471(9):2831–2840

    Article  PubMed  PubMed Central  Google Scholar 

  19. Knobe M, Gradl G, Maier KJ et al (2013) Rotationally stable screw-anchor versus sliding hip screw plate systems in stable trochanteric femur fractures: A biomechanical evaluation. J Orthop Trauma 27(6):127–136

    Article  Google Scholar 

  20. Knobe M, Münker R, Sellei RM et al (2009) Unstable pertrochanteric femur fractures. Failure rate, lag screw sliding and outcome with extra- and intramedullary devices (PCCP, DHS and PFN). Z Orthop Unfall 147:306–313

    Article  CAS  PubMed  Google Scholar 

  21. Knobe M, Nagel P, Maier KJ et al (2016) Rotationally Stable Screw-Anchor with Locked Trochanteric Stabilizing Plate (RoSA/TSP) versus Proximal Femoral Nail Antirotation (PFNA) in the Treatment of AO/OTA 31A2.2 Fracture: A Biomechanical Evaluation. J Orthop Trauma 30(1):e12–e18

    Article  PubMed  Google Scholar 

  22. Knobe M, Siebert CH (2014) Hip fractures in the elderly: Osteosynthesis versus joint replacement. Orthopade 43(4):314–324

    Article  CAS  PubMed  Google Scholar 

  23. Kouvidis GK, Sommers MB, Giannoudis PV et al (2009) Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation. J Orthop Surg Res 18(4):16

    Article  Google Scholar 

  24. Lenich A, Bachmeier S, Prantl L et al (2011) Is the rotation of the femural head a potential initiation for cutting out? A theoretical and experimental approach. BMC Musculoskelet Disord 22(12):79

    Article  Google Scholar 

  25. Lenich A, Vester H, Nerlich M et al (2010) Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip-blade vs screw. Injury 41(12):1292–1296

    Article  PubMed  Google Scholar 

  26. Madsen JE, Naess L, Aune AK et al (1998) Dynamic hip screw with trochanteric stabilizing plate in the treatment of unstable proximal femoral fractures: A comparative study with the gamma nail and compression hip screw. J Orthop Trauma 12(4):241–248

    Article  CAS  PubMed  Google Scholar 

  27. Marsh JL, Slongo TF, Agel J et al (2007) Fracture and dislocation classification compendium – 2007: Orthopaedic Trauma Association classification, database and outcomes committee. J Orthop Trauma 21(10 Suppl):S1–S133

    Article  CAS  PubMed  Google Scholar 

  28. Muhr G, Tscherne H, Thomas R (1979) Comminuted trochanteric femoral fractures in geriatric patients: the results of 231 cases treated with internal fixation and acrylic cement. Clin Orthop Relat Res 138:41–44

    Google Scholar 

  29. O’Neill F, Condon F, McGloughlin T et al (2011) Dynamic hip screw versus DHS blade: a biomechanical comparison of the fixation achieved by each implant in bone. J Bone Joint Surg Br 93(5):616–621

    Article  PubMed  Google Scholar 

  30. Palm H, Jacobsen S, Sonne-Holm S et al (2007) Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation. J Bone Joint Surg Am 89(3):470–475

    PubMed  Google Scholar 

  31. Palm H, Lysén C, Krasheninnikoff M et al (2011) Intramedullary nailing appears to be superior in pertrochanteric hip fractures with a detached greater trochanter. Acta Orthop 82(2):166–170

    Article  PubMed  PubMed Central  Google Scholar 

  32. Parker MJ, Handoll HH (2010) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev 8(9):CD000093. doi:10.1002/14651858.CD000093.pub5

    Google Scholar 

  33. Pervez H, Parker MJ, Vowler S (2004) Prediction of fixation failure after sliding hip screw fixation. Injury 35(10):994–998

    Article  PubMed  Google Scholar 

  34. Simmermacher RK, Ljungqvist J, Bail H et al (2008) The new proximal femoral nail antirotation (PFNA) in daily practice: results of a multicentre clinical study. Injury 39(8):932–939

    Article  CAS  PubMed  Google Scholar 

  35. Sommers MB, Roth C, Hall H et al (2004) A laboratory model to evaluate cutout resistance of implants for pertrochanteric fracture fixation. J Orthop Trauma 18(6):361–368

    Article  PubMed  Google Scholar 

  36. Windolf M, Braunstein V, Dutoit C et al (2009) Is a helical shaped implant a superior alternative to the Dynamic Hip Screw for unstable femoral neck fractures? A biomechanical investigation. Clin Biomech (Bristol, Avon) 24(1):59–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Knobe MME.

Ethics declarations

Interessenkonflikt

K.-J. Maier, B. Bücking, K. Horst, H. Andruszkow, F. Hildebrand und M. Knobe geben an, dass kein Interessenkonflikt besteht.

Es handelt sich um eine prospektive Kohortenstudie an Patienten, welche vorher eine Einverständniserklärung unterschrieben hatten. Alle beschriebenen Untersuchungen am Menschen wurden im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Ein positives Ethik-Votum (KEK RoMed Kliniken, EK 210/11 RWTH Aachen) liegt vor. Es wurden Behandlungsverläufe erfasst und evaluiert. Zusätzliche (experimentelle) Interventionen wurden im Rahmen der Studie nicht durchgeführt.

Additional information

Redaktion

W. Mutschler, München

H. Polzer, München

B. Ockert, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, KJ., Bücking, B., Horst, K. et al. Der Rotationsstabile Schraubanker mit winkelstabiler Stützplatte (RoSA/TAP). Unfallchirurg 120, 1054–1064 (2017). https://doi.org/10.1007/s00113-016-0265-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-016-0265-2

Schlüsselwörter

Keywords

Navigation