Skip to main content
Log in

Magnetresonanz- und Computertomographie

Indikationsstellung in Orthopädie und Unfallchirurgie

Magnetic resonance imaging and computed tomography

What is important in orthopedics and traumatology

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Magnetresonanztomographie (MRT) und Computertomographie (CT) sind weitverbreitete Schnittbildverfahren als Ergänzung zur Nativröntgenaufnahme gleichermaßen in Orthopädie und Unfallchirurgie.

Fragestellung

Darstellung der Einsatzmöglichkeit beider Schnittbildverfahren bei akuten und chronischen Gelenkpathologien.

Material und Methode

Zusammenfassung der relevanten Literatur mit Fokus auf die Aussagekraft von MRT und CT bei Gelenkverletzungen und -veränderungen sowie Darstellung von Fallstricken bei der Befundung.

Ergebnisse

Während das Haupteinsatzgebiet der CT in der Darstellung von Frakturen und Fehlstellungen besteht, liegt das Hauptgewicht des MRT vorrangig in der Visualisierung weichteiliger Veränderungen wie Bandläsionen und Knorpelschäden. Jedes Verfahren hat in beiden Fachgebieten seinen Stellenwert, wobei sie sich ergänzen und gemeinsam einen wichtigen Bestandteil bei der Entwicklung eines Therapiealgorithmus darstellen.

Schlussfolgerungen

CT und MRT sind unverzichtbare, sich ergänzende Verfahren der Diagnostik von Gelenkveränderung in Orthopädie und Unfallchirurgie.

Abstract

Background

Magnetic resonance imaging (MRI) and computed tomography (CT) are established complementary tools for cross-sectional imaging in addition to standard x‑rays in orthopedics and traumatology.

Objective

Illustration of possible applications of MRI and CT in acute and chronic joint diseases.

Material and methods

Summary of the relevant literature with focus on the validity of MRI and CT in depicting joint trauma and pathologies. In addition, description of pitfalls in evaluation of the images.

Results

The main focus of CT is the detailed visualization of fractures and deformities; however, MRI is the primary imaging technique for depiction of soft tissue pathologies, such as ligament tears and chondral lesions. Both imaging techniques are valuable in orthopedics and traumatology and complement each other in the development of treatment algorithms.

Conclusion

Both MRI and CT are essential and complementing cross-sectional imaging techniques in the diagnostic procedures for joint pathologies in orthopedics and traumatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15
Abb. 16
Abb. 17

Literatur

  1. Araujo P, van Eck CF, Torabi M, Fu FH (2013) How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 21:1495–1501. doi:10.1007/s00167-012-2153-9

    Article  PubMed  Google Scholar 

  2. Arendt EA, Fithian DC, Cohen E (2002) Current concepts of lateral patella dislocation. Clin Sports Med 21:499–519

    Article  PubMed  Google Scholar 

  3. Bahrs C, Rolauffs B, Sudkamp NP et al (2009) Indications for computed tomography (CT-) diagnostics in proximal humeral fractures: A comparative study of plain radiography and computed tomography. Bmc Musculoskelet Disord 10:33. doi:10.1186/1471-2474-10-33

    Article  PubMed  PubMed Central  Google Scholar 

  4. Balcarek P, Walde TA, Frosch S et al (2012) MRI but not arthroscopy accurately diagnoses femoral MPFL injury in first-time patellar dislocations. Knee surgery, sports traumatology, arthroscopy. Off J Esska 20:1575–1580. doi:10.1007/s00167-011-1775-7

    Google Scholar 

  5. Bishop JY, Jones GL, Rerko MA et al (2013) 3‑D CT is the most reliable imaging modality when quantifying glenoid bone loss. Clin Orthop Relat Res 471:1251–1256. doi:10.1007/s11999-012-2607-x

    Article  PubMed  Google Scholar 

  6. Bloch F (1946) Nuclear Induction. Phys Rev 70:460–474. doi:10.1103/PhysRev.70.460

    Article  CAS  Google Scholar 

  7. Boileau P, Villalba M, Héry J‑Y et al (2006) Risk factors for recurrence of shoulder instability after arthroscopic Bankart repair. J Bone Joint Surg Am 88:1755–1763. doi:10.2106/JBJS.E.00817

    Article  PubMed  Google Scholar 

  8. Boks SS, Vroegindeweij D, Koes BW et al (2007) MRI follow-up of posttraumatic bone bruises of the knee in general practice. Ajr Am J Roentgenol 189:556–562. doi:10.2214/AJR.07.2276

    Article  PubMed  Google Scholar 

  9. Brittberg M (2008) Autologous chondrocyte implantation – technique and long-term follow-up. Injury 39(Suppl 1):S40–S49. doi:10.1016/j.injury.2008.01.040

    Article  PubMed  Google Scholar 

  10. Carey JL, Grimm NL (2015) Treatment algorithm for osteochondritis dissecans of the knee. Orthop Clin North Am 46:141–146. doi:10.1016/j.ocl.2014.09.010

    Article  PubMed  Google Scholar 

  11. Casula V, Hirvasniemi J, Lehenkari P et al (2014) Association between quantitative MRI and ICRS arthroscopic grading of articular cartilage. Knee Surg Sports Traumatol Arthrosc 24(6):2046–2054. doi:10.1007/s00167-014-3286-9

    Article  PubMed  Google Scholar 

  12. Danieli MV, Guerreiro JPF, Queiroz AD et al (2016) Diagnosis and classification of chondral knee injuries: Comparison between magnetic resonance imaging and arthroscopy. Knee Surg Sports Traumatol Arthrosc 24:1627–1633. doi:10.1007/s00167-015-3622-8

    Article  PubMed  Google Scholar 

  13. Dejour H, Walch G, Neyret P, Adeleine P (1990) Dysplasia of the femoral trochlea. Rev Chir Orthop Reparatrice Appar Mot 76:45–54

    CAS  PubMed  Google Scholar 

  14. Di Giacomo G, Golijanin P, Sanchez G, Provencher MT (2016) Radiographic analysis of the hill-Sachs lesion in anteroinferior shoulder instability after first-time dislocations. Arthrosc : J Arthrosc Relat Surg : Off Publ Arthrosc Assoc N Am Int Arthrosc Assoc 32(8):1509–1514. doi:10.1016/j.arthro.2016.01.022

    Article  Google Scholar 

  15. Doornberg JN, Rademakers MV, van den Bekerom MP et al (2011) Two-dimensional and three-dimensional computed tomography for the classification and characterisation of tibial plateau fractures. Injury 42:1416–1425. doi:10.1016/j.injury.2011.03.025

    Article  PubMed  Google Scholar 

  16. Fritz RC (2003) MR imaging of meniscal and cruciate ligament injuries. Magn Reson Imaging Clin N Am 11:283–293

    Article  PubMed  Google Scholar 

  17. Giannakos A, Drenck TC, Frosch KH (2014) Acute and chronic instability of the elbow joint. Trauma Berufskrankh 16:400–409. doi:10.1007/s10039-014-2114-2

    Article  Google Scholar 

  18. Goutallier D, Van Driessche S, Manicom O et al (2006) Influence of lower-limb torsion on long-term outcomes of tibial valgus osteotomy for medial compartment knee osteoarthritis. J Bone Joint Surg Am 88:2439–2447. doi:10.2106/JBJS.E.01130

    Article  PubMed  Google Scholar 

  19. Hangody L, Dobos J, Baló E et al (2010) Clinical experiences with autologous osteochondral mosaicplasty in an athletic population: A 17-year prospective multicenter study. Am J Sports Med 38:1125–1133. doi:10.1177/0363546509360405

    Article  PubMed  Google Scholar 

  20. Hernandez RJ, Tachdjian MO, Poznanski AK, Dias LS (1981) CT determination of femoral torsion. Am J Roentgenol 137:97–101. doi:10.2214/ajr.137.1.97

    Article  CAS  Google Scholar 

  21. Hofmann S, Romero J, Roth-Schiffl E, Albrecht T (2003) Rotational malalignment of the components may cause chronic pain or early failure in total knee arthroplasty. Orthopade 32:469–476. doi:10.1007/s00132-003-0503-5

    CAS  PubMed  Google Scholar 

  22. Hu Y‑L, Ye F‑G, Ji A‑Y et al (2009) Three-dimensional computed tomography imaging increases the reliability of classification systems for tibial plateau fractures. Injury 40:1282–1285. doi:10.1016/j.injury.2009.02.015

    Article  PubMed  Google Scholar 

  23. Huber-Wagner S, Lefering R, Qvick L‑M et al (2009) Effect of whole-body CT during trauma resuscitation on survival: A retrospective, multicentre study. Lancet 373:1455–1461. doi:10.1016/S0140-6736(09)60232-4

    Article  PubMed  Google Scholar 

  24. Jazrawi LM, Birdzell L, Kummer FJ, Di Cesare PE (2000) The accuracy of computed tomography for determining femoral and tibial total knee arthroplasty component rotation. J Arthroplasty 15:761–766. doi:10.1054/arth.2000.8193

    Article  CAS  PubMed  Google Scholar 

  25. Kim D‑S, Yoon YS, Kwon SM (2010) The spectrum of lesions and clinical results of arthroscopic stabilization of acute anterior shoulder instability. Yonsei Med J 51:421–426. doi:10.3349/ymj.2010.51.3.421

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kornaat PR, Van de Velde SK (2014) Bone marrow edema lesions in the professional runner. Am J Sports Med 42:1242–1246. doi:10.1177/0363546514521990

    Article  PubMed  Google Scholar 

  27. Lauterbur PC (1973) Image formation by induced local interactions: Examples employing nuclear magnetic resonance. Nature 242:190–191. doi:10.1038/242190a0

    Article  CAS  Google Scholar 

  28. Lee YH, Kim AH, Suh J‑S (2014) Magnetic resonance visualization of surgical classification of rotator cuff tear: Comparison with three-dimensional shoulder magnetic resonance arthrography at 3.0 T. Clin Imaging 38:858–863. doi:10.1016/j.clinimag.2014.07.003

    Article  PubMed  Google Scholar 

  29. Lenza M, Buchbinder R, Takwoingi Y et al (2013) Magnetic resonance imaging, magnetic resonance arthrography and ultrasonography for assessing rotator cuff tears in people with shoulder pain for whom surgery is being considered. Cochrane Database Syst Rev 9:CD009020. doi:10.1002/14651858.CD009020.pub2

    PubMed  Google Scholar 

  30. Lin L, Yan H, Xiao J et al (2014) The diagnostic value of magnetic resonance imaging for different types of subscapularis lesions. Knee Surg Sports Traumatol Arthrosc 24(7):2252–2258. doi:10.1007/s00167-014-3335-4

    Article  PubMed  Google Scholar 

  31. Link TM, Lang TF (2014) Axial QCT: Clinical applications and new developments. J Clin Densitom 17:438–448. doi:10.1016/j.jocd.2014.04.119

    Article  PubMed  Google Scholar 

  32. Madry H, Grün UW, Knutsen G (2011) Cartilage repair and joint preservation: Medical and surgical treatment options. Dtsch Arztebl Int 108:669–677. doi:10.3238/arztebl.2011.0669

    PubMed  PubMed Central  Google Scholar 

  33. Meuffels DE, Potters J‑W, Koning AHJ et al (2011) Visualization of postoperative anterior cruciate ligament reconstruction bone tunnels: Reliability of standard radiographs, CT scans, and 3D virtual reality images. Acta Orthop 82:699–703. doi:10.3109/17453674.2011.623566

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nardo L, Karampinos DC, Lansdown DA et al (2014) Quantitative assessment of fat infiltration in the rotator cuff muscles using water-fat MRI. J Magn Reson Imaging 39:1178–1185. doi:10.1002/jmri.24278

    Article  PubMed  Google Scholar 

  35. Nazarian LN, Jacobson JA, Benson CB et al (2013) Imaging algorithms for evaluating suspected rotator cuff disease: Society of Radiologists in Ultrasound consensus conference statement. Radiology 267(2):589–595. doi:10.1148/radiol.13121947

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nosewicz TL, Beerekamp MSH, De Muinck Keizer R‑JO et al (2016) Prospective computed tomographic analysis of osteochondral lesions of the ankle joint associated with ankle fractures. Foot Ankle Int 37(8):829–834. doi:10.1177/1071100716644470

    Article  PubMed  Google Scholar 

  37. Outerbridge RE, Dunlop JA (1975) The problem of chondromalacia patellae. Clin Orthop Relat Res 110:177–196. doi:10.1097/00003086-197507000-00024

    Article  PubMed  Google Scholar 

  38. Ozaki R, Nakagawa S, Mizuno N et al (2014) Hill-sachs lesions in shoulders with traumatic anterior instability: Evaluation using computed tomography with 3‑dimensional reconstruction. Am J Sports Med 42:2597–2605. doi:10.1177/0363546514549543

    Article  PubMed  Google Scholar 

  39. Patte D (1990) Classification of rotator cuff lesions. Clin Orthop Relat Res 254:81–86 (PMID: 2323151)

    PubMed  Google Scholar 

  40. Rehm J, Zeifang F, Weber M‑A (2014) Imaging of the elbow joint with focus MRI. Part 2: Muscles, nerves and synovial membranes. Radiologe 54:279–92–quiz 293–4. doi:10.1007/s00117-013-2643-x

    Google Scholar 

  41. Rhee RB, Chan KK, Lieu JG et al (2012) MR and CT arthrography of the shoulder. Semin Musculoskelet Radiol 16:3–14. doi:10.1055/s-0032-1304297

    Article  PubMed  Google Scholar 

  42. Rulewicz GJ, Beaty S, Hawkins RJ, Kissenberth MJ (2013) Supraspinatus atrophy as a predictor of rotator cuff tear size: An MRI study utilizing the tangent sign. J Shoulder Elbow Surg 22:6–10. doi:10.1016/j.jse.2012.10.048

    Article  Google Scholar 

  43. Sela Y, Eshed I, Shapira S et al (2015) Rotator cuff tears: Correlation between geometric tear patterns on MRI and arthroscopy and pre- and postoperative clinical findings. Acta Radiol 56:182–189. doi:10.1177/0284185114520861

    Article  PubMed  Google Scholar 

  44. Siebenlist S, Biberthaler P (2013) Acute soft tissue injuries of the elbow. Trauma Berufskrankh 17:132–139. doi:10.1007/s10039-013-1987-9

    Article  Google Scholar 

  45. Sillanpää PJ, Peltola E, Mattila VM et al (2009) Femoral avulsion of the medial patellofemoral ligament after primary traumatic patellar dislocation predicts subsequent instability in men: A mean 7‑year nonoperative follow-up study. Am J Sports Med 37:1513–1521. doi:10.1177/0363546509333010

    Article  PubMed  Google Scholar 

  46. Smith TO, Daniell H, Geere J‑A et al (2012) The diagnostic accuracy of MRI for the detection of partial- and full-thickness rotator cuff tears in adults. Magn Reson Imaging 30:336–346. doi:10.1016/j.mri.2011.12.008

    Article  PubMed  Google Scholar 

  47. Sternheim A, Lochab J, Drexler M et al (2012) The benefit of revision knee arthroplasty for component malrotation after primary total knee replacement. Int Orthop 36:2473–2478. doi:10.1007/s00264-012-1675-6

    Article  PubMed  PubMed Central  Google Scholar 

  48. Terrier A, Ston J, Larrea X, Farron A (2014) Measurements of three-dimensional glenoid erosion when planning the prosthetic replacement of osteoarthritic shoulders. Bone Jt J 96:513–518. doi:10.1302/0301-620X.96B4.32641

    Article  Google Scholar 

  49. Voigt C, Ewig M, Vosshenrich R, Lill H (2010) Value of MRI in preoperative diagnostics of proximal humeral fractures compared to CT and conventional radiography. Unfallchirurg 113:378–385. doi:10.1007/s00113-009-1662-6

    Article  CAS  PubMed  Google Scholar 

  50. Walch G, Boileau P, Noël E (2010) Shoulder arthroplasty: Evolving techniques and indications. Joint Bone Spine 77:501–505. doi:10.1016/j.jbspin.2010.09.004

    Article  PubMed  Google Scholar 

  51. Walch G, Young AA, Boileau P et al (2012) Patterns of loosening of polyethylene keeled glenoid components after shoulder arthroplasty for primary osteoarthritis: Results of a multicenter study with more than five years of follow-up. J Bone Joint Surg Am 94:145–150. doi:10.2106/JBJS.J.00699

    Article  PubMed  Google Scholar 

  52. Walch G, Mesiha M, Boileau P et al (2013) Three-dimensional assessment of the dimensions of the osteoarthritic glenoid. Bone Jt J 95:1377–1382. doi:10.1302/0301-620X.95B10.32012

    Article  Google Scholar 

  53. Waterman BR, Belmont PJ, Owens BD (2012) Patellar dislocation in the United States: Role of sex, age, race, and athletic participation. J Knee Surg 25:51–57

    Article  PubMed  Google Scholar 

  54. Weil YA, Gardner MJ, Boraiah S et al (2008) Posteromedial supine approach for reduction and fixation of medial and bicondylar tibial plateau fractures. J Orthop Trauma 22:357–362. doi:10.1097/BOT.0b013e318168c72e

    Article  PubMed  Google Scholar 

  55. Yamamoto N, Itoi E, Abe H et al (2007) Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: A new concept of glenoid track. J Shoulder Elbow Surg 16:649–656. doi:10.1016/j.jse.2006.12.012

    Article  PubMed  Google Scholar 

  56. Yongpravat C, Kim HM, Gardner TR et al (2013) Glenoid implant orientation and cement failure in total shoulder arthroplasty: A finite element analysis. J Shoulder Elbow Surg 22:940–947. doi:10.1016/j.jse.2012.09.007

    Article  PubMed  Google Scholar 

  57. Mauch F, Ammann B, Kraus M (2014) MRT des Kniegelenks unter besonderer Berücksichtigung der Patellaluxation. Unfallchirurg 117:211–220. doi:10.1007/s00113-013-2401-6

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Mauch M.A..

Ethics declarations

Interessenkonflikt

F. Mauch und B. Drews geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

P. Grützner, Ludwigshafen

F. Gebhard, Ulm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauch, F., Drews, B. Magnetresonanz- und Computertomographie. Unfallchirurg 119, 790–802 (2016). https://doi.org/10.1007/s00113-016-0232-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-016-0232-y

Schlüsselwörter

Keywords

Navigation