Skip to main content
Log in

Neuromuskuläres Defizit bei chronischer Sprunggelenkinstabilität

Häufigkeit und Wertigkeit – Multicenterstudie

Neuromuscular deficits in chronic ankle instability

Frequency and significance – multicenter study

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Die peroneale Reaktionszeit (PRT) dient zur Beurteilung eines neuromuskulären Defizits bei der chronisch funktionellen Sprunggelenkinstabilität. Ziel dieser Studie ist es, die PRT an einem großen Patientenkollektiv mit chronischer Sprunggelenkinstabilität zu bestimmen, da unklar ist, ob bei diesen Patienten dieser Parameter als Ausdruck eines neuromuskulären Defizits grundsätzlich erhöht ist. 186 Patienten durchliefen einen diagnostischen Algorithmus aus Anamnese, klinischer Untersuchung, Röntgendiagnostik und Bestimmung der PRT auf einer Kippplattform. Eine verlängerte PRT ließ sich bei der überwiegenden Mehrzahl der Patienten (n = 143; 77 %) nachweisen. Bei 41 % (n = 77) zeigte sich im Rahmen der radiologischen Stressdiagnostik ein signifikanter Seitenunterschied zwischen betroffenem und gesundem Bein bei der Taluskippung (p = 0,002) und beim Talusvorschub (p = 0,04). Von diesen 77 Patienten hatten nur 15 Patienten (8 %) ein radiologisch nachgewiesenes rein mechanisches Problem. Als eine Folge von rezidivierenden Umknicktraumen der Sprunggelenke ist in den meisten Fällen von einem posttraumatischen Defizit der Propriozeptivität auszugehen. Als Konsequenz ergibt sich ein konservativer Therapieansatz mit gezieltem Training zur Schulung der neuromuskulären und propriozeptiven Defizite.

Abstract

The peroneal reaction time (PRT) is used in the assessment of neuromuscular deficits in chronic functional ankle instability. Powered by the Editorial Manager® and Preprint Manager® from Aries Systems Corporation the present study was conducted to determine the PRT in a large collective of patients with chronic ankle instability because it is unclear if this parameter of neuromuscular deficit is prolonged. In this study 186 patients underwent a diagnostic algorithm consisting of anamnesis, clinical examination, X-ray and determination of the PRT on a tilting platform. A prolonged PRT as a manifestation of a neuromuscular deficit could be detected in the majority of the patients (n = 143, 77 %). Comparing the affected and healthy legs 77 patients (41 %) showed a significant difference in talar shift (p = 0.002) and talar tilt (p = 0.04) in the radiological stress views. Of these 77 patients only 15 (8 %) showed radiological evidence of a mechanical problem. As a consequence of recurring ankle sprains a post-traumatic deficit in proprioception has to be expected in most cases. In general a conservative therapy approach should be followed including specific training to improve neuromuscular and proprioceptive deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Ajis A, Maffulli N (2006) Conservative management of chronic ankle instability. Foot Ankle Clin 11:531–537

    Article  PubMed  Google Scholar 

  2. Alt W, Lohrer H, Gollhofer A (1999) Functional properties of adhesive ankle taping: neuromuscular and mechanical effects before and after exercise. Foot Ankle Int 20:238–245

    Article  CAS  PubMed  Google Scholar 

  3. Arnold BL, De La Motte S, Linens S, Ross SE (2009) Ankle instability is associated with balance impairments: a meta-analysis. Med Sci Sports Exerc 41:1048–1062

    Article  PubMed  Google Scholar 

  4. Becker HP, Schmidt R, Gutcke A, Gerngross H (1995) Current status of diagnosis and therapy of chronic collateral ligament instability of the ankle joint: results of a survey of 267 German clinics in 1994. Unfallchirurg 98:493–499

    CAS  PubMed  Google Scholar 

  5. Benesch S, Putz W, Rosenbaum D, Becker H (2000) Reliability of peroneal reaction time measurements. Clin Biomech (Bristol, Avon) 15:21–28

    Google Scholar 

  6. Bosco G, Poppele RE, Eian J (2000) Reference frames for spinal proprioception: limb endpoint based or joint-level based? J Neurophysiol 83:2931–2945

    CAS  PubMed  Google Scholar 

  7. DiGiovanni BF, Partal G, Baumhauer JF (2004) Acute ankle injury and chronic lateral instability in the athlete. Clin Sports Med 23:1–19

    Article  PubMed  Google Scholar 

  8. Eils E, Rosenbaum D (2001) A multi-station proprioceptive exercise program in patients with ankle instability. Med Sci Sports Exerc 33:1991–1998

    Article  CAS  PubMed  Google Scholar 

  9. Evans T, Hertel J, Sebastianelli W (2004) Bilateral deficits in postural control following lateral ankle sprain. Foot Ankle Int 25:833–839

    PubMed  Google Scholar 

  10. Fernandes N, Allison GT, Hopper D (2000) Peroneal latency in normal and injured ankles at varying angles of perturbation. Clin Orthop Relat Res 375:193–201

    Article  PubMed  Google Scholar 

  11. Freeman MA, Dean MR, Hanham IW (1965) The etiology and prevention of functional instability of the foot. J Bone Joint Surg Br 47:678–685

    CAS  PubMed  Google Scholar 

  12. Fritschy D, Reynier JC de, Blanc Y (1988) Plastic surgery of the ligament for chronic lateral instability of the ankle. Int Orthop 12:239–247

    Article  CAS  PubMed  Google Scholar 

  13. Frost SC, Amendola A (1999) Is stress radiography necessary in the diagnosis of acute or chronic ankle instability? Clin J Sport Med 9:40–45

    Article  CAS  PubMed  Google Scholar 

  14. Hagert E (2010) Proprioception of the wrist joint: a review of current concepts and possible implications on the rehabilitation of the wrist. J Hand Ther 23:2–17

    Article  PubMed  Google Scholar 

  15. Hopper D, Allison G, Fernandes N et al (1998) Reliability of the peroneal latency in normal ankles. Clin Orthop Relat Res 350:159–165

    PubMed  Google Scholar 

  16. Isakov E, Mizrahi J, Solzi P (1986) Response of the peroneal muscles to sudden inversion of the ankle during standing. Int J Sport Biomech 2:100–109

    Google Scholar 

  17. Jerosch J, Castro W, Hoffstetter I (1994) Propriozeptive Fähigkeiten bei Probanden mit stabilen und instabilen Sprunggelenken. Z Sportmed 45:380–389

    Google Scholar 

  18. Johnson MB, Johnson CL (1993) Electromyographic response of peroneal muscles in surgical and nonsurgical injured ankles during sudden inversion. J Orthop Sports Phys Ther 18:497–501

    Article  CAS  PubMed  Google Scholar 

  19. Karlsson J, Andreasson GO (1992) The effect of external ankle support in chronic lateral ankle joint instability. An electromyographic study. Am J Sports Med 20:257–261

    Article  CAS  PubMed  Google Scholar 

  20. Karlsson J, Lansinger O (1992) Lateral instability of the ankle joint. Clin Orthop Relat Res 276:253–261

    PubMed  Google Scholar 

  21. Khin Myo H, Ishii T, Sakane M, Hayashi K (1999) Effect of anesthesia of the sinus tarsi on peroneal reaction time in patients with functional instability of the ankle. Foot Ankle Int 20:554–559

    Article  Google Scholar 

  22. Konradsen L, Olesen S, Hansen HM (1998) Ankle sensorimotor control and eversion strength after acute ankle inversion injuries. Am J Sports Med 26:72–77

    CAS  PubMed  Google Scholar 

  23. Konradsen L, Ravn JB (1990) Ankle instability caused by prolonged peroneal reaction time. Acta Orthop Scand 61:388–390

    Article  CAS  PubMed  Google Scholar 

  24. Konradsen L, Ravn JB (1991) Prolonged peroneal reaction time in ankle instability. Int J Sports Med 12:290–292

    Article  CAS  PubMed  Google Scholar 

  25. Konradsen L, Ravn JB, Sorensen AI (1993) Proprioception at the ankle: the effect of anaesthetic blockade of ligament receptors. J Bone Joint Surg Br 75:433–436

    CAS  PubMed  Google Scholar 

  26. Lipke K, Tannheimer M, Benesch S et al (2001) Peroneal reaction time: study of a normal sample. Unfallchirurg 104:1157–1161

    Article  CAS  PubMed  Google Scholar 

  27. Lofvenberg R, Karrholm J, Sundelin G (1996) Proprioceptive reaction in the healthy and chronically unstable ankle joint. Sportverletz Sportschaden 10:79–83

    Article  CAS  PubMed  Google Scholar 

  28. Lohrer H, Alt W, Gollhofer A (1999) Neuromuscular properties and functional aspects of taped ankles. Am J Sports Med 27:69–75

    CAS  PubMed  Google Scholar 

  29. Lynch SA, Eklund U, Gottlieb D et al (1996) Electromyographic latency changes in the ankle musculature during inversion moments. Am J Sports Med 24:362–369

    Article  CAS  PubMed  Google Scholar 

  30. O’Loughlin PF, Murawski CD, Egan C, Kennedy JG (2009) Ankle instability in sports. Phys Sportsmed 37:93–103

    Article  Google Scholar 

  31. Rein S, Fabian T, Weindel S et al (2011) The influence of playing level on functional ankle stability in soccer players. Arch Orthop Trauma Surg 131:1043–1052

    Article  PubMed  Google Scholar 

  32. Rein S, Fabian T, Zwipp H et al (2010) Influence of age, body mass index and leg dominance on functional ankle stability. Foot Ankle Int 31:423–432

    Article  PubMed  Google Scholar 

  33. Renstrom P, Wertz M, Incavo S et al (1988) Strain in the lateral ligaments of the ankle. Foot Ankle 9:59–63

    Article  CAS  PubMed  Google Scholar 

  34. Ross SE, Guskiewicz KM (2006) Effect of coordination training with and without stochastic resonance stimulation on dynamic postural stability of subjects with functional ankle instability and subjects with stable ankles. Clin J Sport Med 16:323–328

    Article  PubMed  Google Scholar 

  35. Ross SE, Guskiewicz KM, Gross MT, Yu B (2009) Balance measures for discriminating between functionally unstable and stable ankles. Med Sci Sports Exerc 41:399–407

    Article  PubMed  Google Scholar 

  36. Scheuffelen C, Rapp W, Gollhofer A, Lohrer H (1993) Orthotic devices in functional treatment of ankle sprain. Stabilizing effects during real movements. Int J Sports Med 14:140–149

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt R, Benesch S, Bender A et al (2005) The potential for training of proprioceptive and coordinative parameters in patients with chronic ankle instability. Z Orthop Ihre Grenzgeb 14:227–232

    Article  Google Scholar 

  38. Takebayashi T, Yamashita T, Minaki Y, Ishii S (1997) Mechanosensitive afferent units in the lateral ligament of the ankle. J Bone Joint Surg Br 79:490–493

    Article  CAS  PubMed  Google Scholar 

  39. Taube W, Schubert M, Gruber M et al (2006) Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. J Appl Physiol 101:420–429

    Article  PubMed  Google Scholar 

  40. Wikstrom EA, Naik S, Lodha N, Cauraugh JH (2009) Balance capabilities after lateral ankle trauma and intervention: a meta-analysis. Med Sci Sports Exerc 41:1287–1295

    Article  PubMed  Google Scholar 

  41. Wikstrom EA, Naik S, Lodha N, Cauraugh JH (2010) Bilateral balance impairments after lateral ankle trauma: a systematic review and meta-analysis. Gait Posture 31:407–414

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tannheimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R., Becker, H., Rauhut, F. et al. Neuromuskuläres Defizit bei chronischer Sprunggelenkinstabilität. Unfallchirurg 117, 710–715 (2014). https://doi.org/10.1007/s00113-013-2392-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-013-2392-3

Schlüsselwörter

Keywords

Navigation