Skip to main content

Advertisement

Log in

High expression of BCAT1 sensitizes AML cells to PARP inhibitor by suppressing DNA damage response

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Previous evidence has confirmed that branched-chain aminotransferase-1 (BCAT1), a key enzyme governing branched-chain amino acid (BCAA) metabolism, has a role in cancer aggression partly by restricting αKG levels and inhibiting the activities of the αKG-dependent enzyme family. The oncogenic role of BCAT1, however, was not fully elucidated in acute myeloid leukemia (AML). In this study, we investigated the clinical significance and biological insight of BCAT1 in AML. Using q-PCR, we analyzed BCAT1 mRNAs in bone marrow samples from 332 patients with newly diagnosed AML. High BCAT1 expression independently predicts poor prognosis in patients with AML. We also established BCAT1 knockout (KO)/over-expressing (OE) AML cell lines to explore the underlying mechanisms. We found that BCAT1 affects cell proliferation and modulates cell cycle, cell apoptosis, and DNA damage/repair process. Additionally, we demonstrated that BCAT1 regulates histone methylation by reducing intracellular αKG levels in AML cells. Moreover, high expression of BCAT1 enhances the sensitivity of AML cells to the Poly (ADP-ribose) polymerase (PARP) inhibitor both in vivo and in vitro. Our study has demonstrated that BCAT1 expression can serve as a reliable predictor for AML patients, and PARP inhibitor BMN673 can be used as an effective treatment strategy for patients with high BCAT1 expression.

Key messages

  • High expression of BCAT1 is an independent risk factor for poor prognosis in patients with CN-AML.

  • High BCAT1 expression in AML limits intracellular αKG levels, impairs αKG-dependent histone demethylase activity, and upregulates H3K9me3 levels.

  • H3K9me3 inhibits ATM expression and blocks cellular DNA damage repair process.

  • Increased sensitivity of BCAT1 high expression AML to PARP inhibitors may be used as an effective treatment strategy in AML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

TCGA microarray data that were available from the TCGA Research Network (http://cancergenome.nih.gov) via download from the CBio Portal for Cancer Genomics (http://www.cbioportal. org/public-portal/index.do) under the AML data sets. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

BCAT1 :

Branched-chain aminotransferase 1

PARPi:

Poly (ADP-ribose) polymerase (PARP) inhibitor

CR:

Response rate

BCAAs:

Branched-chain amino acids

αKG :

Alpha-ketoglutarate

BCAAs:

Branched-chain amino acids

BCKAs:

Branched-chain keto acids

2HG:

2-Hydroxyglutarate

OS:

Overall survival

EFS:

Event free survival

FAHZU:

First Affiliated Hospital of Zhejiang University

KO:

Knockout

OE:

Overexpressing

References

  1. Cerrano M, Itzykson R (2019) New treatment options for acute myeloid leukemia in 2019. Curr Oncol Rep 21(2):16

    Article  PubMed  Google Scholar 

  2. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK et al (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3):453–474

    Article  PubMed  Google Scholar 

  3. Wang Y, Zhang L, Chen WL, Wang JH, Li N, Li JM et al (2013) Rapid diagnosis and prognosis of de novo acute myeloid leukemia by serum metabonomic analysis. J Proteome Res 12(10):4393–4401

    Article  CAS  PubMed  Google Scholar 

  4. Castro I, Sampaio-Marques B, Ludovico P (2019) Targeting metabolic reprogramming in acute myeloid leukemia. Cells 8(9)

  5. Tönjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM et al (2013) BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med 19(7):901–908

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang L, Han J (2017) Branched-chain amino acid transaminase 1 (BCAT1) promotes the growth of breast cancer cells through improving mTOR-mediated mitochondrial biogenesis and function. Biochem Biophys Res Commun 486(2):224–231

    Article  CAS  PubMed  Google Scholar 

  7. Wang ZQ, Faddaoui A, Bachvarova M, Plante M, Gregoire J, Renaud MC et al (2015) BCAT1 expression associates with ovarian cancer progression: possible implications in altered disease metabolism. Oncotarget 6(31):31522–31543

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zheng YH, Hu WJ, Chen BC, Grahn TH, Zhao YR, Bao HL et al (2016) BCAT1, a key prognostic predictor of hepatocellular carcinoma, promotes cell proliferation and induces chemoresistance to cisplatin. Liver international : official journal of the International Association for the Study of the Liver 36(12):1836–1847

    Article  CAS  PubMed  Google Scholar 

  9. Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J et al (2017) Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature 545(7655):500–504

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C et al (2017) BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature 551(7680):384–388

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Ananieva EA, Wilkinson AC (2018) Branched-chain amino acid metabolism in cancer. Curr Opin Clin Nutr Metab Care 21(1):64–70

    Article  CAS  PubMed  Google Scholar 

  12. Ichihara A, Koyama E (1966) Transaminase of branched chain amino acids. I. Branched chain amino acids-alpha-ketoglutarate transaminase. J Biochem 59(2):160–9

  13. Mayers JR, Torrence ME, Danai LV, Papagiannakopoulos T, Davidson SM, Bauer MR et al (2016) Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science (New York, NY) 353(6304):1161–1165

    Article  ADS  CAS  Google Scholar 

  14. Mayers JR, Vander Heiden MG (2017) Nature and nurture: what determines tumor metabolic phenotypes? Can Res 77(12):3131–3134

    Article  CAS  Google Scholar 

  15. D’Oto A, Tian QW, Davidoff AM, Yang J (2016) Histone demethylases and their roles in cancer epigenetics. J Med Oncol Ther 1(2):34–40

    PubMed  PubMed Central  Google Scholar 

  16. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483(7390):474–478

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hvinden IC, Cadoux-Hudson T, Schofield CJ, McCullagh JSO (2021) Metabolic adaptations in cancers expressing isocitrate dehydrogenase mutations. Cell Rep Med 2(12)

  18. Nakagawa M, Nakatani F, Matsunaga H, Seki T, Endo M, Ogawara Y et al (2019) Selective inhibition of mutant IDH1 by DS-1001b ameliorates aberrant histone modifications and impairs tumor activity in chondrosarcoma. Oncogene 38(42):6835–6849

    Article  CAS  PubMed  Google Scholar 

  19. Inoue S, Li WY, Tseng A, Beerman I, Elia AJ, Bendall SC et al (2016) Mutant IDH1 downregulates ATM and alters DNA repair and sensitivity to DNA damage independent of TET2. Cancer Cell 30(2):337–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Padmakumar D, Chandraprabha VR, Gopinath P, Vimala Devi ART, Anitha GRJ, Sreelatha MM et al (2021) A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res 111:106727

    Article  CAS  PubMed  Google Scholar 

  21. Jaroslav P, Martina H, Jirí S, Hana K, Petr S, Tomás K et al (2005) Expression of cyclins D1, D2, and D3 and Ki-67 in Leukemia. Leuk Lymphoma 46(11):1605–1612

    Article  CAS  PubMed  Google Scholar 

  22. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 14(2):130–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abla H, Sollazzo M, Gasparre G, Iommarini L, Porcelli AM (2020) The multifaceted contribution of α-ketoglutarate to tumor progression: an opportunity to exploit? Semin Cell Dev Biol 98:26–33

    Article  CAS  PubMed  Google Scholar 

  24. Kaławaj K, Sławińska-Brych A, Mizerska-Kowalska M, Żurek A, Bojarska-Junak A, Kandefer-Szerszeń M et al (2020)Alpha ketoglutarate exerts in vitro anti-osteosarcoma effects through inhibition of cell proliferation, induction of apoptosis via the JNK and caspase 9-dependent mechanism, and suppression of TGF-β and VEGF production and metastatic potential of cells. Int J Mol Sci 21(24)

  25. Blanquart C, Linot C, Cartron PF, Tomaselli D, Mai A, Bertrand P (2019) Epigenetic metalloenzymes. Curr Med Chem 26(15):2748–2785

    Article  CAS  PubMed  Google Scholar 

  26. Lord CJ, Ashworth A (2017) PARP inhibitors: synthetic lethality in the clinic. Science (New York, NY) 355(6330):1152–1158

    Article  ADS  CAS  Google Scholar 

  27. Molenaar RJ, Radivoyevitch T, Nagata Y, Khurshed M, Przychodzen B, Makishima H et al (2018) IDH1/2 mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitors. Clin Cancer Res 24(7):1705–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H et al (2017) 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Science translational medicine 9(375)

  29. Sarkar A, Gandhi V (2021) Activation of ATM kinase by ROS generated during ionophore-induced mitophagy in human T and B cell malignancies. Mol Cell Biochem 476(1):417–423

    Article  CAS  PubMed  Google Scholar 

  30. Pommier Y, O'Connor MJ, de Bono J (2016) Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med 8(362):362ps17

  31. Zhao L, So CW (2016) PARP-inhibitor-induced synthetic lethality for acute myeloid leukemia treatment. Exp Hematol 44(10):902–907

    Article  CAS  PubMed  Google Scholar 

  32. King MC (2014) The race to clone BRCA1. Science (New York, NY) 343(6178):1462–1465

    Article  ADS  CAS  Google Scholar 

  33. Scardocci A, Guidi F, D’Alo F, Gumiero D, Fabiani E, Diruscio A et al (2006) Reduced BRCA1 expression due to promoter hypermethylation in therapy-related acute myeloid leukaemia. Br J Cancer 95(8):1108–1113

  34. Esposito MT, Zhao L, Fung TK, Rane JK, Wilson A, Martin N et al (2015) Synthetic lethal targeting of oncogenic transcription factors in acute leukemia by PARP inhibitors. Nat Med 21(12):1481–1490

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Li C, Jin J, Wang J, Huang J, Ma Z et al (2018) High PARP-1 expression predicts poor survival in acute myeloid leukemia and PARP-1 inhibitor and SAHA-bendamustine hybrid inhibitor combination treatment synergistically enhances anti-tumor effects. EBioMedicine 38:47–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muvarak NE, Chowdhury K, Xia L, Robert C, Choi EY, Cai Y et al (2016) Enhancing the cytotoxic effects of PARP inhibitors with DNA demethylating agents - a potential therapy for cancer. Cancer Cell 30(4):637–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajehا S. The role of tissue factor in signaling pathways of pathological conditions and angiogenesis. Curr Mol Med. 2023.

  38. Mao L, Chen J, Lu X, Yang C, Ding Y, Wang M et al (2021) Proteomic analysis of lung cancer cells reveals a critical role of BCAT1 in cancer cell metastasis. Theranostics 11(19):9705–9720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, et al. (2022) SOX2 function in cancers: association with growth, invasion, stemness and therapy response. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 156:113860.

  40. Ding LN, Yu YY, Ma CJ, Lei CJ, Zhang HB (2023) SOX2-associated signaling pathways regulate biological phenotypes of cancers. Biomed Pharmacother 160:114336

  41. Hillier J, Allcott GJ, Guest LA, Heaselgrave W, Tonks A, Conway ME et al (2022)The BCAT1 CXXC motif provides protection against ROS in acute myeloid leukaemia cells. Antioxidants (Basel, Switzerland) 11(4)

  42. Chirasani SR, Markovic DS, Synowitz M, Eichler SA, Wisniewski P, Kaminska B et al (2009) Transferrin-receptor-mediated iron accumulation controls proliferation and glutamate release in glioma cells. J Mol Med (Berl) 87(2):153–167

    Article  CAS  PubMed  Google Scholar 

  43. Robert SM, Sontheimer H (2014) Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 71(10):1839–1854

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Ravi Bhatia for providing the MV4-11and OCI-AML3 cell lines and Professor Rongzhen Xu for providing the MV4-11-luc cell line used in these experiments. We are very thankful to the members of the Key Laboratory of Hematologic Malignancies for their support for the experimental installation and scientific discussion.

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81820108004 and No. 81900154), Natural Science Foundation of Zhejiang Province, China (LQ18H080001), and National Natural Science Foundation of China Young Scientists Fund (No. 82300170).

Author information

Authors and Affiliations

Authors

Contributions

PJJ and JJ design the study. PJJ, WYG, and HSJ carried out the study. PJJ and WJH drafted the manuscript. LCY, LQ, LFL, LX, and YWL collected patient samples and helped in the acquisition of data; MSH, YMX, and LYF collected background information; HX, HJS, and WFH performed statistical analysis. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jinghan Wang or Jie Jin.

Ethics declarations

Ethics approval and consent to participate

Animal experiment was performed according to the guidelines and SOPs approved by the Department of Science and Technology of Zhejiang Province, China. All procedures performed in studies involving human participants were in accordance with the ethical standards of the Ethics Committee of the First Affiliated Hospital, Zhejiang University School of Medicine.

Consent for publication

All authors agreed on the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5910 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, J., Wang, Y., Huang, S. et al. High expression of BCAT1 sensitizes AML cells to PARP inhibitor by suppressing DNA damage response. J Mol Med 102, 415–433 (2024). https://doi.org/10.1007/s00109-023-02409-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-023-02409-1

Keywords

Navigation