Skip to main content

Advertisement

Log in

NLRP3 inflammasome priming and activation in cholestatic liver injury via the sphingosine 1-phosphate/S1P receptor 2/Gα(12/13)/MAPK signaling pathway

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

NLRP3 inflammasome-driven inflammation represents a key trigger for hepatic fibrogenesis during cholestatic liver injury. However, whether sphingosine 1-phosphate (S1P) plays a role in NLRP3 inflammasome priming and activation remains unknown. Here, we found that the expression of NLRP3 in macrophages and NLRP3 inflammasome activation were significantly elevated in the liver injured by bile duct ligation (BDL). In vitro, S1P promoted the NLRP3 inflammasome priming and activation via S1P receptor 2 (S1PR2) in bone marrow–derived monocyte/macrophages (BMMs). Focusing on BMMs, the gene silencing of Gα12 or Gα13 by specific siRNA suppressed NLRP3 inflammasome priming and pro-inflammatory cytokine (IL-1β and IL-18) secretion, whereas Gα(i/o) and Gαq were not involved in this process. The MAPK signaling pathways (P38, ERK, and JNK) mediated NLRP3 inflammasome priming and IL-1β and IL-18 secretion, whereas blockage of PI3K, ROCK, and Rho family had no such effect. Moreover, JTE-013 (S1PR2 inhibitor) treatment markedly reduced NLRP3 inflammasome priming and activation in BDL-injured liver. Collectively, S1P promotes NLRP3 inflammasome priming and pro-inflammatory cytokines (IL-1β and IL-18) secretion via the S1PR2/Gα(12/13)/MAPK pathway, which may represent an effective therapeutic strategy for liver disease.

Key message

• Hepatic NLRP3 expression was significantly elevated in BMMs of BDL-injured mouse liver.

• S1P promoted NLRP3 inflammasome priming and activation in BMMs, depending on the S1PR2/Gα(12/13)/MAPK pathway.

• Blockade of S1PR2 by JTE-013 reduced NLRP3 inflammasome priming and activation inflammasome in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Li Y, Tang R, Leung PSC, Gershwin ME, Ma X (2017) Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases. Autoimmun Rev 16(9):885–896

    Article  CAS  PubMed  Google Scholar 

  2. Vilas-Boas V, Gijbels E, Jonckheer J, De Waele E, Vinken M (2020) Cholestatic liver injury induced by food additives, dietary supplements and parenteral nutrition. Environ Int 136:105422

    Article  CAS  PubMed  Google Scholar 

  3. Woolbright BL (2020) Inflammation: cause or consequence of chronic cholestatic liver injury. Food Chem Toxicol 137:111133

    Article  CAS  PubMed  Google Scholar 

  4. Gomez-Munoz A, Presa N, Gomez-Larrauri A, Rivera IG, Trueba M, Ordonez M (2016) Control of inflammatory responses by ceramide, sphingosine 1-phosphate and ceramide 1-phosphate. Prog Lipid Res 61:51–62

    Article  CAS  PubMed  Google Scholar 

  5. Fyrst H, Saba JD (2010) An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol 6(7):489–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ksiazek M, Chacinska M, Chabowski A, Baranowski M (2015) Sources, metabolism, and regulation of circulating sphingosine-1-phosphate. J Lipid Res 56(7):1271–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bryan AM, Del Poeta M (2018) Sphingosine-1-phosphate receptors and innate immunity. Cell Microbiol 20(5):e12836

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li C, Zheng S, You H, Liu X, Lin M, Yang L, Li L (2011) Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J Hepatol 54(6):1205–1213

    Article  CAS  PubMed  Google Scholar 

  9. Yang L, Yue S, Yang L, Liu X, Han Z, Zhang Y, Li L (2013) Sphingosine kinase/sphingosine 1-phosphate (S1P)/S1P receptor axis is involved in liver fibrosis-associated angiogenesis. J Hepatol 59(1):114–123

    Article  CAS  PubMed  Google Scholar 

  10. Zhao S, Adebiyi MG, Zhang Y, Couturier JP, Fan X, Zhang H, Kellems RE, Lewis DE, Xia Y (2018) Sphingosine-1-phosphate receptor 1 mediates elevated IL-6 signaling to promote chronic inflammation and multitissue damage in sickle cell disease. FASEB J 32(5):2855–2865

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gaire BP, Song MR, Choi JW (2018) Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization. J Neuroinflammation 15(1):284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang L, Han Z, Tian L, Mai P, Zhang Y, Wang L, Li L (2015) Sphingosine 1-phosphate receptor 2 and 3 mediate bone marrow-derived monocyte/macrophage motility in cholestatic liver injury in mice. Sci Rep 5:13423

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yang J, Yang L, Tian L, Ji X, Yang L, Li L (2018) Sphingosine 1-phosphate (S1P)/S1P receptor2/3 axis promotes inflammatory M1 polarization of bone marrow-derived monocyte/macrophage via G(alpha)i/o/PI3K/JNK pathway. Cell Physiol Biochem 49(5):1677–1693

    Article  CAS  PubMed  Google Scholar 

  14. Mantovani A, Dinarello CA, Molgora M, Garlanda C (2019) Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50(4):778–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Szabo G, Csak T (2012) Inflammasomes in liver diseases. J Hepatol 57(3):642–654

    Article  CAS  PubMed  Google Scholar 

  16. El Kasmi KC, Vue PM, Anderson AL, Devereaux MW, Ghosh S, Balasubramaniyan N, Fillon SA, Dahrenmoeller C, Allawzi A, Woods C, McKenna S, Wright CJ, Johnson L, D'Alessandro A, Reisz JA, Nozik-Grayck E, Suchy FJ, Sokol RJ (2018) Macrophage-derived IL-1β/NF-κB signaling mediates parenteral nutrition-associated cholestasis. Nat Commun 9(1):1393

    Article  PubMed  PubMed Central  Google Scholar 

  17. Meier RPH, Meyer J, Montanari E, Lacotte S, Balaphas A, Muller YD, Clément S, Negro F, Toso C, Morel P, Buhler LH (2019) Interleukin-1 receptor antagonist modulates liver inflammation and fibrosis in mice in a model-dependent manner. Int J Mol Sci 20(6). https://doi.org/10.3390/ijms20061295

  18. Awad F, Assrawi E, Louvrier C, Jumeau C, Georgin-Lavialle S, Grateau G, Amselem S, Giurgea I, Karabina SA (2018) Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther 187:133–149

    Article  CAS  PubMed  Google Scholar 

  19. Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, Haczeyni F, Teoh NC, Savard C, Ioannou GN, Masters SL, Schroder K, Cooper MA, Feldstein AE, Farrell GC (2017) NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 66(5):1037–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cai SY, Ge M, Mennone A, Hoque R, Ouyang X, Boyer JL (2020) Inflammasome is activated in the liver of Cholestatic patients and aggravates hepatic injury in bile duct-ligated mouse. Cell Mol Gastroenterol Hepatol 9(4):679–688

    Article  PubMed  Google Scholar 

  21. Ning ZW, Luo XY, Wang GZ, Li Y, Pan MX, Yang RQ, Ling XG, Huang S, Ma XX, Jin SY, Wang D, Li X (2017) MicroRNA-21 mediates angiotensin II-induced liver fibrosis by activating NLRP3 inflammasome/IL-1β Axis via targeting Smad7 and Spry1. Antioxid Redox Signal 27(1):1–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wree A, McGeough MD, Pena CA, Schlattjan M, Li H, Inzaugarat ME, Messer K, Canbay A, Hoffman HM, Feldstein AE (2014) NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berlin, Germany) 92(10):1069–1082

    Article  CAS  Google Scholar 

  23. Jin Y, Li C, Xu D, Zhu J, Wei S, Zhong A, Sheng M, Duarte S, Coito AJ, Busuttil RW, Xia Q, Kupiec-Weglinski JW, Ke B (2019) Jagged1-mediated myeloid Notch1 signaling activates HSF1/snail and controls NLRP3 inflammasome activation in liver inflammatory injury. Cell Mol Immunol 17:1245–1256

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang S, Jiang L, Hu H, Wang H, Wang X, Jiang J, Ma Y, Yang J, Hou Y, Xie D, Zhang Q (2020) Pretreatment of exosomes derived from hUCMSCs with TNF-alpha ameliorates acute liver failure by inhibiting the activation of NLRP3 in macrophage. Life Sci 246:117401

    Article  CAS  PubMed  Google Scholar 

  25. Zhang WJ, Fang ZM, Liu WQ (2019) NLRP3 inflammasome activation from Kupffer cells is involved in liver fibrosis of Schistosoma japonicum-infected mice via NF-kappaB. Parasit Vectors 12(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li C, Kong Y, Wang H, Wang S, Yu H, Liu X, Yang L, Jiang X, Li L, Li L (2009) Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. J Hepatol 50(6):1174–1183

    Article  CAS  PubMed  Google Scholar 

  27. Tilg H, Moschen AR, Szabo G (2016) Interleukin-1 and inflammasomes in alcoholic liver disease/acute alcoholic hepatitis and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology (Baltimore, Md) 64(3):955–965

    Article  CAS  Google Scholar 

  28. Luan J, Ju D (2018) Inflammasome: a double-edged sword in liver diseases. Front Immunol 9:2201

    Article  PubMed  PubMed Central  Google Scholar 

  29. Boaru SG, Borkham-Kamphorst E, Tihaa L, Haas U, Weiskirchen R (2012) Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. J Inflamm (London, England) 9(1):49

    Article  CAS  Google Scholar 

  30. van der Heide D, Weiskirchen R, Bansal R (2019) Therapeutic targeting of hepatic macrophages for the treatment of liver diseases. Front Immunol 10:2852

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tacke F (2017) Targeting hepatic macrophages to treat liver diseases. J Hepatol 66(6):1300–1312

    Article  CAS  PubMed  Google Scholar 

  32. Takabe K, Paugh SW, Milstien S, Spiegel S (2008) “Inside-out” signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 60(2):181–195

    Article  CAS  PubMed  Google Scholar 

  33. Alyaseer AAA, de Lima MHS, Braga TT (2020) The role of NLRP3 inflammasome activation in the epithelial to mesenchymal transition process during the fibrosis. Front Immunol 11:883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McMillin M, Frampton G, Grant S, Khan S, Diocares J, Petrescu A, Wyatt A, Kain J, Jefferson B, DeMorrow S (2017) Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice. Front Cell Neurosci 11:191

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhao S, Gong Z, Du X, Tian C, Wang L, Zhou J, Xu C, Chen Y, Cai W, Wu J (2018) Deoxycholic acid-mediated sphingosine-1-phosphate receptor 2 signaling exacerbates DSS-induced colitis through promoting cathepsin B release. J Immunol Res 2018:2481418

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yan T, Wang H, Cao L, Wang Q, Takahashi S, Yagai T, Li G, Krausz KW, Wang G, Gonzalez FJ, Hao H (2018) Glycyrrhizin alleviates nonalcoholic Steatohepatitis via modulating bile acids and meta-inflammation. Drug Metab Dispos 46(9):1310–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weichand B, Popp R, Dziumbla S, Mora J, Strack E, Elwakeel E, Frank AC, Scholich K, Pierre S, Syed SN, Olesch C, Ringleb J, Oren B, Doring C, Savai R, Jung M, von Knethen A, Levkau B, Fleming I, Weigert A, Brune B (2017) S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1beta. J Exp Med 214(9):2695–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gu JL, Muller S, Mancino V, Offermanns S, Simon MI (2002) Interaction of G alpha(12) with G alpha(13) and G alpha(q) signaling pathways. Proc Natl Acad Sci U S A 99(14):9352–9357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim KM, Han CY, Kim JY, Cho SS, Kim YS, Koo JH, Lee JM, Lim SC, Kang KW, Kim JS, Hwang SJ, Ki SH, Kim SG (2018) Galpha12 overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells. J Hepatol 68(3):493–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaffe E, Katsifa A, Xylourgidis N, Ninou I, Zannikou M, Harokopos V, Foka P, Dimitriadis A, Evangelou K, Moulas AN, Georgopoulou U, Gorgoulis VG, Dalekos GN, Aidinis V (2017) Hepatocyte autotaxin expression promotes liver fibrosis and cancer. Hepatology (Baltimore, Md) 65(4):1369–1383

    Article  CAS  Google Scholar 

  41. Bataller R, Sancho-Bru P, Gines P, Lora JM, Al-Garawi A, Sole M, Colmenero J, Nicolas JM, Jimenez W, Weich N, Gutierrez-Ramos JC, Arroyo V, Rodes J (2003) Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology 125(1):117–125

    Article  CAS  PubMed  Google Scholar 

  42. Wang C, Hockerman S, Jacobsen EJ, Alippe Y, Selness SR, Hope HR, Hirsch JL, Mnich SJ, Saabye MJ, Hood WF, Bonar SL, Abu-Amer Y, Haimovich A, Hoffman HM, Monahan JB, Mbalaviele G (2018) Selective inhibition of the p38alpha MAPK-MK2 axis inhibits inflammatory cues including inflammasome priming signals. J Exp Med 215(5):1315–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li Z, Zhao F, Cao Y, Zhang J, Shi P, Sun X, Zhang F, Tong L (2018) DHA attenuates hepatic ischemia reperfusion injury by inhibiting pyroptosis and activating PI3K/Akt pathway. Eur J Pharmacol 835:1–10

    Article  CAS  PubMed  Google Scholar 

  44. Song N, Liu ZS, Xue W, Bai ZF, Wang QY, Dai J, Liu X, Huang YJ, Cai H, Zhan XY, Han QY, Wang H, Chen Y, Li HY, Li AL, Zhang XM, Zhou T, Li T (2017) NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol Cell 68(1):185–197.e186

    Article  CAS  PubMed  Google Scholar 

  45. Wang F, Okamoto Y, Inoki I, Yoshioka K, Du W, Qi X, Takuwa N, Gonda K, Yamamoto Y, Ohkawa R, Nishiuchi T, Sugimoto N, Yatomi Y, Mitsumori K, Asano M, Kinoshita M, Takuwa Y (2010) Sphingosine-1-phosphate receptor-2 deficiency leads to inhibition of macrophage proinflammatory activities and atherosclerosis in apoE-deficient mice. J Clin Invest 120(11):3979–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural and Science Foundation of China (81970532, 81770603).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Liying Li; Methodology, Lei Hou; Funding acquisition, Liying Li and Na Chang; Formal analysis, Lei Hou; Investigation, Lei Hou, Zhi Zhang, Xinhao Zhao. and Xuan Zhou; Writing-original draft preparation, Lei Hou, Le Yang, and Na Chang; Writing-review and editing, Liying Li; project administration, Lin Yang. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Liying Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

All animal work conformed to the Ethics Committee of Capital Medical University and were in accordance with the approved guidelines (approval AEEI-2014-131).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Zhang, Z., Yang, L. et al. NLRP3 inflammasome priming and activation in cholestatic liver injury via the sphingosine 1-phosphate/S1P receptor 2/Gα(12/13)/MAPK signaling pathway. J Mol Med 99, 273–288 (2021). https://doi.org/10.1007/s00109-020-02032-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-020-02032-4

Keywords

Navigation