Skip to main content

Advertisement

Log in

Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In the past decade, a shift toward targeted therapies in non-small-cell lung cancer following molecular profiling has dramatically changed the way advanced adenocarcinoma is treated. However, tumor cells inevitably acquire resistance to such therapies, circumventing any sustained clinical benefit. As the genomic classification of lung cancer continues to evolve and as the mechanisms of acquired resistance to targeted therapies become elucidated and more improved target-specific drugs come into sight, the future will see more promising results from the clinic through the development of new therapeutic strategies to overcome, or prevent the development of, resistance for lung cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  3. Shames D, Wistuba I (2014) The evolving genomic classification of lung cancer. J Pathol 232:121–133

    Article  CAS  PubMed  Google Scholar 

  4. American Cancer Society (2012) Cancer facts and figures 2012. [Accessed January 13, 2014]. Available from: http://www.cancer.org/acs/groups/content/@epidemiologysurveilance/documents/document/acspc-031941.pdf

  5. Hrustanovic G, Lee B, Bivona T (2013) Mechanisms of resistance to EGFR targeted therapies. Cancer Biol Ther 14:304–314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Spiro S, Silvestri G (2005) One hundred years of lung cancer. Am J Respir Crit Care Med 172:523–529

    Article  PubMed  Google Scholar 

  7. Metro G, Cappuzzo F (2009) Emerging drugs for small-cell lung cancer. Expert Opin Emerg Drugs 14:591–606

    Article  CAS  PubMed  Google Scholar 

  8. Kelly K, Crowley J, Bunn P Jr, Presant C, Grevstad P, Moinpour C, Ramsey S, Wozniak A, Weiss G, Moore D et al (2001) Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non-small-cell lung cancer: a Southwest Oncology Group trial. J Clin Oncol 19:3210–3218

    CAS  PubMed  Google Scholar 

  9. Schiller J, Harrington D, Belani C, Langer C, Sandler A, Krook J, Zhu J, Johnson D (2002) Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346:92–98

    Article  CAS  PubMed  Google Scholar 

  10. Scagliotti G, De Marinis F, Rinaldi M, Crino L, Gridelli C, Ricci S, Matano E, Boni C, Marangolo M, Failla G et al (2002) Phase III randomized trial comparing three platinum-based doublets in advanced non-small-cell lung cancer. J Clin Oncol 20:4285–4291

    Article  CAS  PubMed  Google Scholar 

  11. Bonanno L, Favaretto A, Rosell R (2014) Platinum drugs and DNA repair mechanisms in lung cancer. Anticancer Res 34:493–502

    CAS  PubMed  Google Scholar 

  12. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A, Lilenbaum R, Johnson D (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542–2550

    Article  CAS  PubMed  Google Scholar 

  13. Pao W, Chmielecki J (2010) Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer 11:760–774

    Article  CAS  Google Scholar 

  14. Sawyers C (2004) Targeted cancer therapy. Nature 432:294–297

    Article  CAS  PubMed  Google Scholar 

  15. Weinstein I (2002) Addiction to oncogenes—the Achilles heal of cancer. Science 297:63–64

    Article  CAS  PubMed  Google Scholar 

  16. Niederst M, Engelman J (2013) Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci Signal 6:re6

    Article  PubMed  CAS  Google Scholar 

  17. Thomas A, Rajan A, Lopez-Chavez A, Wang Y, Giaccone G (2013) From targets to targeted therapies and molecular profiling in non-small cell lung carcinoma. Ann Oncol 24:577–585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kim E, Herbst R, Wistuba I, Lee J, Blumenschein G Jr, Tsao A, Stewart D, Hicks M, Erasmus J Jr, Gupta S et al (2011) The BATTLE trial: personalizing therapy for lung cancer. Cancer Discov 1:44–53

    Article  CAS  PubMed  Google Scholar 

  19. Cardarella S, Ortiz T, Joshi V, Butaney M, Jackman D, Kwiakowski D, Yeap B, Jänne P, Linderman N, Johnson B (2012) The introduction of systematic genomic testing for patients with non-small-cell lung cancer. J Thorac Oncol 12:1767–1774

    Article  CAS  Google Scholar 

  20. Linderman N, Cagle P, Beasley M, Chitale D, Dacic S, Giaccone G, Jenkins R, Kwiatkowski D, Saldivar J, Squire J et al (2013) Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Mol Diagn 15:415–453

    Article  CAS  Google Scholar 

  21. Linderman N, Cagle P, Beasley M, Chitale D, Dacic S, Giaccone G, Jenkins R, Kwiatkowski D, Saldivar J, Squire J et al (2013) Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J Thorac Oncol 8:823–859

    Article  CAS  Google Scholar 

  22. Linderman N, Cagle P, Beasley M, Chitale D, Dacic S, Giaccone G, Jenkins R, Kwiatkowski D, Saldivar J, Squire J et al (2013) Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Arch Pathol Lab Med 137:828–860

    Article  CAS  Google Scholar 

  23. Gadgeel S, Chen W, Cote ML, Bollig-Fischer A, Land S, Schwartz AG, Bepler G (2013) Fibroblast growth factor receptor 1 amplification in non-small cell lung cancer by quantitative real-time PCR. PLoS One 8:e79820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, Mahale S, Davies K, Aisner D, Pilling A et al (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 19:1469–1472

    Article  CAS  PubMed  Google Scholar 

  25. Berger A, Imielinski M, Duke F, Wala J, Kaplan N, Shi G, Andres D, Meyerson M (2014) Oncogenic RIT1 mutations in lung adenocarcinoma. Oncogenesis. doi:10.1038/onc.2013.581

  26. Weir B, Woo M, Getz G, Perner S, Ding L, Beroukhim R, Lin W, Province M, Kraja A, Johnson L et al (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450:893–898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Weber B, Hager H, Sorensen B, McCulloch T, Mellemgaard A, Khalil A, Nexo E, Meldgaard P (2014) EGFR mutation frequency and effectiveness of erlotinib: a prospective observational study in Danish patients with non-small cell lung cancer. Lung Cancer 83:224–230

    Article  PubMed  Google Scholar 

  28. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Dogan S, Shen R, Ang DC, Johnson ML, D’Angelo SP, Paik PK, Brzostowski EB, Riely GJ, Kris MG, Zakowski MF et al (2012) Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin Cancer Res 18:6169–6177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Lynch T, Bell D, Sordella R, Gurubhagavatula S, Okimoto R, Brannigan B, Harris P, Haserlat S, Supko J, Haluska F et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  31. Paez J, Jänne P, Lee J, Tracy S, Greulich H, Gabriel S, Herman P, Kaye F, Lindeman N, Boggon T et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  CAS  PubMed  Google Scholar 

  32. Mok T, Wu Y, Thongprasert S, Yang C, Chu D, Saijo N, Sunpaweravong P, Han B, Margono B, Ichinose Y et al (2009) Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  CAS  PubMed  Google Scholar 

  33. Sequist L, Yang J, Yamamoto N, O’Byrne K, Hirsh V, Mok T, Geater S, Orlov S, Tsai C, Boyer M et al (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31:3327–3334

    Article  CAS  PubMed  Google Scholar 

  34. Fukuoka M, Wu Y, Thongprasert S, Sunpaweravong P, Leong S, Sriuranpong V, Chao T, Nakagawa K, Chu D, Saijo N et al (2011) Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 29:2866–2874

    Article  CAS  PubMed  Google Scholar 

  35. Han JY, Park K, Kim SW, Lee DH, Kim HY, Kim HT, Ahn MJ, Yun T, Ahn JS, Suh C et al (2012) First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trail in never-smokers with adenocarcinoma of the lung. J Clin Oncol 10:1122–1128

    Article  CAS  Google Scholar 

  36. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J, Seto T, Satouchi M, Tada H, Hirashima T et al (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of epidermal growth factor receptor (WJTOG3405): an open label, randomized phase 3 trial. Lancet Oncol 11:121–128

    Article  CAS  PubMed  Google Scholar 

  37. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380–2388

    Article  CAS  PubMed  Google Scholar 

  38. Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Palmero R, Garcia-Gomez R, Pallares C, Sanchez JM et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246

    Article  CAS  PubMed  Google Scholar 

  39. Zhou C, Wu Y, Chen G, Feng J, Liu X, Wang C, Zhang S, Wang J, Zhou S, Ren S et al (2011) Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12:735–742

    Article  CAS  PubMed  Google Scholar 

  40. Jackman D, Pao W, Riely G, Engelman J, Kris M, Jänne P, Lynch T, Johnson B, Miller V (2010) Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J Clin Oncol 28:357–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kobayashi S, Boggon T, Dayaram T, Jänne P, Kocher O, Meyerson M, Johnson B, Eck M, Tenen DG, Halmos B (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352:786–792

    Article  CAS  PubMed  Google Scholar 

  42. Pao W, Miller V, Politi K, Riely G, Somwar R, Zakowski M, Kris M, Varmus H (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Sequist L, Waltman B, Dias-Santagata D, Digumarthy S, Turke A, Fidias P, Bergethon K, Shaw A, Gettinger S, Cosper A et al (2011) Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med 75:ra26

    Google Scholar 

  44. Yun C, Mengwasser K, Toms A, Woo M, Greulich H, Wong K, Meyerson M, Eck M (2008) The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci 105:2070–2075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Inukai M, Toyooka S, Ito S, Asano H, Ichihara S, Soh J, Suehisa H, Ouchida M, Aoe K, Aoe M et al (2006) Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res 66:7854–7858

    Article  CAS  PubMed  Google Scholar 

  46. Balak M, Gong Y, Riely G, Somwar R, Li A, Zakowski M, Chiang A, Yang G, Ouerfelli O, Kris M et al (2006) NovelD761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12:6494–6501

    Article  CAS  PubMed  Google Scholar 

  47. Bean J, Riely G, Balak M, Marks J, Ladanyi M, Miller V, Pao W (2008) Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res 14:7519–7525

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Costa D, Schumer S, Tenen D, Kobayashi S (2008) Differential responses to erlotinib in epidermal growth factor receptor (EGFR)-mutated lung cancers with acquired resistance to gefitinib carrying the L747S or T790M secondary mutations. J Clin Oncol 26:1182–1184

    Article  PubMed  Google Scholar 

  49. Engelman J, Zejnullahu K, Gale C, Lifshits E, Gonzales A, Shimamura T, Zhao F, Vincent P, Naumov G, Bradner J et al (2007) PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res 67:11924–11932

    Article  CAS  PubMed  Google Scholar 

  50. Water A, Sjin RT, Haringsma HJ, Ohashi K, Sun J, Lee K, Dubrovskiy A, Labenski M, Zhu Z, Wang Z et al (2013) Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov 3:1404–1415

    Article  CAS  Google Scholar 

  51. Ranson M, Pao W, Kim D, Kim S, Ohe Y, Felip E, Planchard D, Ghiorghiu S, Cantarini M, Jänne P (2013) LATE BREAKING ABSTRACT: preliminary results from a Phase I study with AZD9291: an irreversible inhibitor of epidermal growth factor receptor (EGFR) activating and resistance mutations in non-small-cell lung cancer (NSCLC). Eur Cancer Congr Abstr: 33.

  52. Chong C, Jänne P (2013) The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 19:1389–1400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Engelman J, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park J, Lindeman N, Gale C, Zhao X, Christensen J et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  CAS  PubMed  Google Scholar 

  54. Bean J, Brennan C, Shih J, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci 104:20932–20937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Turke B, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, Toschi L, Rogers A, Mok T, Sequist L et al (2010) Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17:77–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Yano S, Wang W, Li Q, Matsumoto K, Sakurama H, Nakamura T, Ogino H, Kakiuchi S, Hanibuchi M, Nishioka Y et al (2008) Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res 68:9479–9487

    Article  CAS  PubMed  Google Scholar 

  57. Takezawa K, Pirazzoli V, Arcila M, Nebhan C, Song X, de Stanchina E, Ohashi K, Janjigian Y, Spitzler P, Melnick M et al (2012) HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov 2:922–933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, Abdel-Rahman M, Wang X, Levine AD, Rho JK et al (2012) Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet 44:852–860

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Chaft J, Arcila M, Paik P, Lau C, Riely G, Pietanza M, Zakowski M, Rusch V, Sima C, Ladanyi M et al (2012) Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. Mol Cancer Ther 11:485–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yu H, Arcila M, Rekhtman N, Sima C, Zakowski M, Pao W, Kris M, Miller V, Ladanyi M, Riely G (2013) Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res 19:2240–2247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hallberg B, Palmer R (2013) Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat Rev Cancer 13:685–700

    Article  CAS  PubMed  Google Scholar 

  62. Soda M, Choi Y, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566

    Article  CAS  PubMed  Google Scholar 

  63. Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, Nardone J, Lee K, Reeves C, Li Y et al (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131:1190–1203

    Article  CAS  PubMed  Google Scholar 

  64. Li Y, Ye X, Liu J, Zha J, Pei L (2011) Evaluation of EML4-ALK fusion proteins in non-small cell lung cancer using small molecule inhibitors. Neoplasia 13:1–11

    PubMed Central  PubMed  Google Scholar 

  65. Wong D, Leung E, So K, Tam I, Sihoe A, Cheng L, Ho K, Au J, Chung L, Pik Wong M (2009) The EML4-ALKfusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115:1723–1733

    Article  CAS  PubMed  Google Scholar 

  66. Gainor J, Varghese A, Ou S, Kabraji S, Awad M, Katayama R, Pawlak A, Mino-Kenudson M, Yeap B, Riely G et al (2013) ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res 19:4273–4281

    Article  CAS  PubMed  Google Scholar 

  67. Zhang N, Liu Y, Ma L, Wang L, Hao X, Yuan Z, Lin D, Li D, Zhou Y, Lin H et al (2014) The molecular detection and clinical significance of ALK rearrangement in selected advanced non-small cell lung cancer: ALK expression provides insights into ALK targeted therapy. PLoS One 9:e84501

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  68. Kwak E, Bang Y, Camidge D, Shaw A, Solomon B, Maki R, Ou S, Dezube B, Jänne P, Costa D et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Shaw A, Kim D, Nakagawa K, Seto T, Crinó L, Ahn M, De Pas T, Besse B, Solomon B, Blackhall F et al (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368:2385–2394

    Article  CAS  PubMed  Google Scholar 

  70. Shaw T, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, Shapiro GI, Costa DB, Ou SH, Butaney M et al (2011) Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 12:1004–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C et al (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med 120:ra17

    Google Scholar 

  72. Doebele R, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA et al (2012) Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 18:1472–1482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Choi Y, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363:1734–1739

    Article  CAS  PubMed  Google Scholar 

  74. Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, Lathan C, Marcoux JP, Du J, Okuda K et al (2011) A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 71:6051–6060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Tartarone A, Lazzari C, Lerose R, Conteduca V, Improta G, Zupa A, Bulotta A, Aieta M, Gregorc V (2013) Mechanisms of resistance to EGFR tyrosine kinase inhibitors gefitinib/erlotinib and to ALK inhibitor crizotinib. Lung Cancer 81:328–336

    Article  PubMed  Google Scholar 

  76. Bos M, Gardizi M, Schildhaus HU, Heukamp LC, Geist T, Kaminsky B, Zander T, Nogova L, Scheffler M, Dietlein M, Kobe C, Holstein A, Maintz D, Büttner R, Wolf J (2013) Complete metabolic response in a patient with repeatedly relapsed non-small cell lung cancer harboring ROS1 gene rearrangement after treatment with crizotinib. Lung Cancer 81:142-143.

  77. Shaw A, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, Camidge DR, Vansteenkiste J, Sharma S, De Pas T et al (2014) Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 370:1189–1197

    Article  CAS  PubMed  Google Scholar 

  78. Seto T, Kiura K, Nishio M, Nakagawa K, Maemondo M, Inoue A, Hida T, Yamamoto N, Yoshioka H, Harada M et al (2013) CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study. Lancet Oncol 14:590–598

    Article  CAS  PubMed  Google Scholar 

  79. Ou S, Gadgeel S, Chiappori A, Riely G, Lee R, Garcia L, Tatsuno M, Tanaka T, Gandhi L (2013) LATE BREAKING ABSTRACT: safety and efficacy analysis of RO5424802/CH5424802 in anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) patients who have failed crizotinib in a dose-finding phase I study (AF-002JG, NCT01588028). Eur Cancer Congr Abstr 44.

  80. Camidge D, Bazhenova L, Salgia R, Weiss G, Langer C, Shaw A, Narasimhan N, Dorer D, Rivera V, Zhang J et al (2013) First-in-human dose-finding study of the ALK/EGFR inhibitor AP26113 in patients with advanced malignancies: updated results. J Clin Oncol Abstr 31:8031

    Google Scholar 

  81. Patnaik A, LoRusso P, Ball H, Bahceci E, Yuen G, Papadopoulos K, Kittaneh M, Tolcher A (2013) Pharmacokinetics and safety of an oral ALK inhibitor, ASP3026, observed in a phase I dose escalation trial. J Clin Oncol Abstr 31:2606

    Google Scholar 

  82. Brahmer J, Tykodi S, Chow L, Hwu W, Topalian S, Hwu P, Drake C, Camacho L, Kauh J, Odunsi K et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami TA, Oikawa N, Tsukuda T, Ishii N, Aoki Y (2011) CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell 19:679–690

    Article  CAS  PubMed  Google Scholar 

  84. Takeuchi K, Soda M, Togashi Y, Suzuki R, Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H et al (2012) RET, ROS1 and ALK fusions in lung cancer. Nat Med 18:378–381

    Article  CAS  PubMed  Google Scholar 

  85. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R et al (2012) ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 30:863–870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Suehara Y, Arcila M, Wang L, Hasanovic A, Ang D, Ito T, Kimura Y, Drilon A, Guha U, Rusch V et al (2012) Identification of KIF5B-RET and GOPC-ROS1 fusions in lung adenocarcinomas through a comprehensive mRNA-based screen for tyrosine kinase fusions. Clin Cancer Res 18:6599–6608

    Article  CAS  PubMed  Google Scholar 

  87. Jun H, Johnson H, Bronson RT, de Feraudy S, White F, Charest A (2012) The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Res 72:3764–3767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Chin L, Soo R, Soong R, Ou S (2012) Targeting ROS1 with anaplastic lymphoma kinase inhibitors: a promising therapeutic strategy for a newly defined molecular subset of non-small-cell lung cancer. J Thorac Oncol 7:1625–1630

    Article  CAS  PubMed  Google Scholar 

  89. Ou S, Bang Y, Camidge D, Riely G, Salgia R, Shapiro G, Solomon B, Engelman J, Kwak E, Clark J et al (2013) Efficacy and safety of crizotinib in patients with advanced ROS1-rearranged non-small cell lung cancer (NSCLC). J Clin Oncol Abstr 31:8032

    Google Scholar 

  90. Awad M, Katayama R, McTigue M, Liu W, Deng YL, Brooun A, Friboulet L, Huang D, Falk M, Timofeevski S et al (2013) Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med 368:2395–2401

    Article  CAS  PubMed  Google Scholar 

  91. Davies K, Mahale S, Astling D, Aisner D, Le A, Hinz T, Vaishnavi A, Bunn P Jr, Heasley L, Tan A et al (2013) Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS One 8:e82236

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  92. Kohno T, Ichikawa H, Totoki Y, Yasuda K, Hiramoto M, Nammo T, Sakamoto H, Tsuta K, Furuta K, Shimada Y et al (2012) KIF5B-RET fusions in lung adenocarcinoma. Nat Med 18:375–377

    Article  CAS  PubMed  Google Scholar 

  93. Pao W, Hutchinson K (2012) Chipping away at the lung cancer genome. Nat Med 18:349–351

    Article  CAS  PubMed  Google Scholar 

  94. Drilon A, Wang L, Hasanovic A, Suehara Y, Lipson D, Stephens P, Ross J, Miller V, Ginsberg M, Zakowski M et al (2013) Response to Cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov 3:630–635

    Article  CAS  PubMed  Google Scholar 

  95. Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, Del Grammastro M, Sciarrotta M, Buttitta F, Incarbone M et al (2009) Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol 27:1667–1674

    Article  PubMed Central  PubMed  Google Scholar 

  96. Sadiq A, Salgia R (2013) MET as a possible target for non-small-cell lung cancer. J Clin Oncol 31:1089–1096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Basilico C, Pennacchietti S, Vigna E, Chiriaco C, Arena S, Bardelli A, Valdembri D, Serini G, Michieli P (2013) Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET. Clin Cancer Res 19:2381–2392

    Article  CAS  PubMed  Google Scholar 

  98. Katayama R, Aoyama A, Yamori T, Qi J, Oh-hara T, Song Y, Engelman JA, Fujita N (2013) Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-MET inhibition. Cancer Res 73:3087–3096

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Ou S, Kwak E, Siwak-Tapp C, Dy J, Bergethon K, Clark J, Camidge D, Solomon B, Maki R, Bang Y et al (2011) Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol 6:942–946

    Article  PubMed  Google Scholar 

  100. Spigel D, Ervin T, Ramlau R, Daniel D, Goldschmidt J Jr, Blumenschein G Jr, Krzakowski M, Robinet G, Godbert B, Barlesi F et al (2013) Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol 31:4105–4114

    Article  CAS  PubMed  Google Scholar 

  101. Cepero V, Sierra J, Corso S, Ghiso E, Casorzo L, Perera T, Comoglio P, Giordano S (2010) MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res 70:7580–7590

    Article  CAS  PubMed  Google Scholar 

  102. McDermott U, Pusapati R, Christensen J, Gray N, Settleman J (2010) Acquired resistance of non-small cell lung cancer cells to MET kinase inhibition is mediated by a switch to epidermal growth factor receptor dependency. Cancer Res 70:1625–1634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H, Wistuba I, Fong K, Toyooka S, Shimizu N et al (2005) Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 65:1642–1646

    Article  CAS  PubMed  Google Scholar 

  104. Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, Stevens C, O'Meara S, Smith R, Parker A et al (2004) Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431:525–526

    Article  CAS  PubMed  Google Scholar 

  105. Mazières J, Peters S, Lepage B, Cortot A, Barlesi F, Beau-Faller M, Besse B, Blons H, Mansuet-Lupo A, Urban T et al (2013) Lung cancer that harbors an HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J Clin Oncol 31:1997–2003

    Article  PubMed  CAS  Google Scholar 

  106. Ross H, Blumenschein G Jr, Aisner J, Damjanov N, Dowlati A, Garst J, Rigas J, Smylie M, Hassani H, Allen K et al (2010) Randomized phase II multicenter trial of two schedules of lapatinib as first- or second-line monotherapy in patients with advanced or metastatic non-small cell lung cancer. Clin Cancer Res 16:1938–1949

    Article  CAS  PubMed  Google Scholar 

  107. Davies H, Bignell G, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett M, Bottomley W et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  108. Paik P, Arcila M, Fara M, Sima C, Miller V, Kris M, Ladanyi M, Riely G (2011) Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 29:2046–2051

    Article  PubMed Central  PubMed  Google Scholar 

  109. Sosman J, Kim K, Schuchter L, Gonzalez R, Pavlick A, Weber J, McArthur G, Hutson T, Moschos S, Flaherty K et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Marchetti A, Felicioni L, Malatesta S, Grazia Sciarrotta M, Guetti L, Chella A, Viola P, Pullara C, Mucilli F, Buttitta F (2011) Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol 29:3574–3579

    Article  CAS  PubMed  Google Scholar 

  111. Planchard D, Mazieres J, Riely G, Rudin C, Barlesi F, Quoix E, Souquet P, Socinski M, Switzky J, Ma B et al (2013) Interim results of phase II study BRF113928 of dabrafenib in BRAF V600E mutation–positive non-small cell lung cancer (NSCLC) patients. ASCO Meet Abstr 31:8009

    Google Scholar 

  112. Rudin C, Hong K, Streit M (2013) Molecular characterization of acquired resistance to the BRAF inhibitor dabrafenib in a patient with BRAF-mutant non-small-cell lung cancer. J Thorac Oncol 8:e41–e42

    PubMed Central  PubMed  Google Scholar 

  113. Oxnard G, Binder A, Jänne P (2013) New targetable oncogenes in non-small-cell lung cancer. J Clin Oncol 31:1097–1104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Hammerman P, Sos M, Ramos A, Xu C, Dutt A, Zhou W, Brace L, Woods B, Lin W, Zhang J et al (2011) Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov 1:78–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Dutt A, Ramos A, Hammerman P, Mermel C, Cho J, Sharifnia T, Chande A, Tanaka KE, Stransky N, Greulich H et al (2011) Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS One 6:e20351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Sliwkowski M, Mellman I (2013) Antibody therapeutics in cancer. Science 341:1192–1198

    Article  CAS  PubMed  Google Scholar 

  117. Topalian S, Hodi F, Brahmer J, Gettinger S, Smith D, McDermott D, Powderly J, Carvajal R, Sosman J, Atkins M et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Murtaza M, Dawson SJ, Tsui DW, Gale D, Forshew T, Piskorz AM, Parkinson C, Chin SF, Kingsbury Z, Wong AS et al (2013) Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature 497:108–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Lombardi Comprehensive Cancer Center at Georgetown University.

Conflict of interest

The authors declare that they have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Giaccone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gower, A., Wang, Y. & Giaccone, G. Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer. J Mol Med 92, 697–707 (2014). https://doi.org/10.1007/s00109-014-1165-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-014-1165-y

Keywords

Navigation