Skip to main content

Advertisement

Log in

An eye on the future of inflammasomes and drug development in AMD

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Age-related macular degeneration (AMD) is the leading cause of central vision loss worldwide. While activation of the immune system has been implicated in disease progression, the pathways involved remain relatively unclear. Typically, inflammatory responses are caused as a result of pathogenic infection. However, in chronic conditions, like AMD, a form of ‘sterile’ inflammation can exist in localised areas of the body in response to modified host-derived elements and particulate matter accumulation, due to the activation of a complex termed the ‘inflammasome’. Inflammasomes control the activity of two major pro-inflammatory cytokines, namely, interleukin (IL)-1β and IL-18, by allowing for their cleavage from inactive pro-forms into mature cytokines. The major pathological hallmark common to both ‘dry’ and ‘wet’ AMD is the presence of extracellular deposits, known as drusen, below the retinal pigment epithelium in the macula of the eye. Past studies have shown that host-derived particulate matter such as amyloid deposits and atherosclerotic plaques can be ‘sensed’ by the NLRP3-inflammasome causing cleavage of pro-IL-1β and pro-IL-18. We have recently reported that the NLRP3-inflammasome can also ‘sense’ drusen isolated from human AMD donor eyes and that IL-18 protects against the development of choroidal neovascularisation in a model that mimics ‘wet’ AMD. In fact, since then, a number of studies have reported roles for the NLRP3-inflammasome in AMD. This review will focus on describing, comparing and contrasting these reports and analyzing the potential for manipulating the NLRP3-inflammasome as a therapy for AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. AC C (1478) De Medicina. Nicolaus Laurentii, Florence

  2. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  PubMed  CAS  Google Scholar 

  3. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  PubMed  CAS  Google Scholar 

  4. White ES, Mantovani AR (2013) Inflammation, wound repair, and fibrosis: reassessing the spectrum of tissue injury and resolution. J Pathol 229:141–144

    Article  PubMed  CAS  Google Scholar 

  5. Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  6. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34

    Article  PubMed  CAS  Google Scholar 

  7. O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364

    Article  PubMed  Google Scholar 

  8. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  PubMed  CAS  Google Scholar 

  9. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188

    Article  PubMed  CAS  Google Scholar 

  10. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ, Ting JP (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415

    Article  PubMed  CAS  Google Scholar 

  11. Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL, Perera D, Neale GA, Hooiveld GJ, Hijmans A, Vroegrijk I et al (2011) Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci U S A 108:15324–15329

    Article  PubMed  CAS  Google Scholar 

  12. Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol 11:897–904

    Article  PubMed  CAS  Google Scholar 

  13. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  PubMed  CAS  Google Scholar 

  14. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  PubMed  CAS  Google Scholar 

  15. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  PubMed  CAS  Google Scholar 

  16. Drouin-Ouellet J, Cicchetti F (2012) Inflammation and neurodegeneration: the story 'retolled'. Trends Pharmacol Sci 33:542–551

    Article  PubMed  CAS  Google Scholar 

  17. Rock KL, Latz E, Ontiveros F, Kono H (2010) The sterile inflammatory response. Annu Rev Immunol 28:321–342

    Article  PubMed  CAS  Google Scholar 

  18. Rein DB, Wittenborn JS, Zhang X, Honeycutt AA, Lesesne SB, Saaddine J (2009) Group VHC-ES: forecasting age-related macular degeneration through the year 2050: the potential impact of new treatments. Arch Ophthalmol 127:533–540

    Article  PubMed  Google Scholar 

  19. Swaroop A, Chew EY, Rickman CB, Abecasis GR (2009) Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration. Annu Rev Genomics Hum Genet 10:19–43

    Article  PubMed  CAS  Google Scholar 

  20. Gu X, Meer SG, Miyagi M, Rayborn ME, Hollyfield JG, Crabb JW, Salomon RG (2003) Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem 278:42027–42035

    Article  PubMed  CAS  Google Scholar 

  21. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  PubMed  CAS  Google Scholar 

  22. Kinnunen K, Petrovski G, Moe MC, Berta A, Kaarniranta K (2012) Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration. Acta Ophthalmol 90:299–309

    Article  PubMed  CAS  Google Scholar 

  23. Eldred GE (1995) Lipofuscin fluorophore inhibits lysosomal protein degradation and may cause early stages of macular degeneration. Gerontology 41(Suppl 2):15–28

    Article  PubMed  CAS  Google Scholar 

  24. Bressler SB, Maguire MG, Bressler NM, Fine SL (1990) Relationship of drusen and abnormalities of the retinal pigment epithelium to the prognosis of neovascular macular degeneration. The Macular Photocoagulation Study Group. Arch Ophthalmol 108:1442–1447

    Article  PubMed  CAS  Google Scholar 

  25. Benhar I, London A, Schwartz M (2012) The privileged immunity of immune privileged organs: the case of the eye. Front Immunol 3:296

    Article  PubMed  CAS  Google Scholar 

  26. Krohne TU, Stratmann NK, Kopitz J, Holz FG (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 90:465–471

    Article  PubMed  CAS  Google Scholar 

  27. Doyle SL, Campbell M, Ozaki E, Salomon RG, Mori A, Kenna PF, Farrar GJ, Kiang AS, Humphries MM, Lavelle EC et al (2012) NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med 18:791–798

    Article  PubMed  CAS  Google Scholar 

  28. Tarallo V, Hirano Y, Gelfand BD, Dridi S, Kerur N, Kim Y, Cho WG, Kaneko H, Fowler BJ, Bogdanovich S et al (2012) DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149:847–859

    Article  PubMed  CAS  Google Scholar 

  29. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  PubMed  CAS  Google Scholar 

  30. Wagner H (2006) Endogenous TLR ligands and autoimmunity. Adv Immunol 91:159–173

    Article  PubMed  CAS  Google Scholar 

  31. Yang Z, Stratton C, Francis PJ, Kleinman ME, Tan PL, Gibbs D, Tong Z, Chen H, Constantine R, Yang X et al (2008) Toll-like receptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 359:1456–1463

    Article  PubMed  CAS  Google Scholar 

  32. Zareparsi S, Buraczynska M, Branham KE, Shah S, Eng D, Li M, Pawar H, Yashar BM, Moroi SE, Lichter PR et al (2005) Toll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration. Hum Mol Genet 14:1449–1455

    Article  PubMed  CAS  Google Scholar 

  33. Allikmets R, Bergen AA, Dean M, Guymer RH, Hageman GS, Klaver CC, Stefansson K, Weber BH (2009) Consortium IA-rMDG: Geographic atrophy in age-related macular degeneration and TLR3. N Engl J Med 360:2252–2254, author reply 2255–2256

    PubMed  CAS  Google Scholar 

  34. Edwards AO, Chen D, Fridley BL, James KM, Wu Y, Abecasis G, Swaroop A, Othman M, Branham K, Iyengar SK et al (2008) Toll-like receptor polymorphisms and age-related macular degeneration. Invest Ophthalmol Vis Sci 49:1652–1659

    Article  PubMed  Google Scholar 

  35. Cho Y, Wang JJ, Chew EY, Ferris FL, Mitchell P, Chan CC, Tuo J (2009) Toll-like receptor polymorphisms and age-related macular degeneration: replication in three case–control samples. Invest Ophthalmol Vis Sci 50:5614–5618

    Article  PubMed  Google Scholar 

  36. Netea MG, Wijmenga C, O'Neill LA (2012) Genetic variation in Toll-like receptors and disease susceptibility. Nat Immunol 13:535–542

    Article  PubMed  CAS  Google Scholar 

  37. Dowling JK, O'Neill LA (2012) Biochemical regulation of the inflammasome. Crit Rev Biochem Mol Biol 47:424–443

    Article  PubMed  CAS  Google Scholar 

  38. Kauppinen A, Niskanen H, Suuronen T, Kinnunen K, Salminen A, Kaarniranta K (2012) Oxidative stress activates NLRP3 inflammasomes in ARPE-19 cells–implications for age-related macular degeneration (AMD). Immunol Lett 147:29–33

    Article  PubMed  CAS  Google Scholar 

  39. Tseng WA, Thein T, Kinnunen K, Lashkari K, Gregory MS, D'Amore PA, Ksander BR (2013) NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci 54:110–120

    Article  PubMed  CAS  Google Scholar 

  40. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361

    Article  PubMed  CAS  Google Scholar 

  41. Masters SL, O'Neill LA (2011) Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol Med 17:276–282

    Article  PubMed  CAS  Google Scholar 

  42. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300

    Article  PubMed  CAS  Google Scholar 

  43. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99:14682–14687

    Article  PubMed  CAS  Google Scholar 

  44. Dastgheib K, Green WR (1994) Granulomatous reaction to Bruch's membrane in age-related macular degeneration. Arch Ophthalmol 112:813–818

    Article  PubMed  CAS  Google Scholar 

  45. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, Podrez EA, Salomon RG, Byzova TV (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467:972–976

    Article  PubMed  CAS  Google Scholar 

  46. Hyttinen JM, Petrovski G, Salminen A, Kaarniranta K (2011) 5'-Adenosine monophosphate-activated protein kinase—mammalian target of rapamycin axis as therapeutic target for age-related macular degeneration. Rejuvenation Res 14:651–660

    Article  PubMed  CAS  Google Scholar 

  47. Mariathasan S, Weiss DS, Newton K, McBride J, O'Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232

    Article  PubMed  CAS  Google Scholar 

  48. Ichinohe T, Pang IK, Iwasaki A (2010) Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 11:404–410

    Article  PubMed  CAS  Google Scholar 

  49. Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, Germain RN, Kastner DL, Chae JJ (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492:123–127

    Article  PubMed  CAS  Google Scholar 

  50. Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, Eisenbarth SC, Florquin S, Flavell RA, Leemans JC et al (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A 106:20388–20393

    Article  PubMed  CAS  Google Scholar 

  51. Lauer N, Mihlan M, Hartmann A, Schlötzer-Schrehardt U, Keilhauer C, Scholl HP, Charbel Issa P, Holz F, Weber BH, Skerka C et al (2011) Complement regulation at necrotic cell lesions is impaired by the age-related macular degeneration-associated factor-H His402 risk variant. J Immunol 187:4374–4383

    Article  PubMed  CAS  Google Scholar 

  52. Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES (2012) Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem 287:36617–36622

    Article  PubMed  CAS  Google Scholar 

  53. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140

    Article  PubMed  CAS  Google Scholar 

  54. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM et al (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36:401–414

    Article  PubMed  CAS  Google Scholar 

  55. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  PubMed  CAS  Google Scholar 

  56. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8:3–5

    Article  PubMed  CAS  Google Scholar 

  57. Witte ME, Geurts JJ, de Vries HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10:411–418

    Article  PubMed  CAS  Google Scholar 

  58. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  PubMed  CAS  Google Scholar 

  59. Bryant C, Fitzgerald KA (2009) Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 19:455–464

    Article  PubMed  CAS  Google Scholar 

  60. Schütt F, Bergmann M, Holz FG, Kopitz J (2002) Isolation of intact lysosomes from human RPE cells and effects of A2-E on the integrity of the lysosomal and other cellular membranes. Graefes Arch Clin Exp Ophthalmol 240:983–988

    Article  PubMed  Google Scholar 

  61. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28:348–368

    Article  PubMed  Google Scholar 

  62. Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG, Kleinman ME, Ponicsan SL, Hauswirth WW, Chiodo VA et al (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471:325–330

    Article  PubMed  CAS  Google Scholar 

  63. Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11:633–652

    Article  PubMed  CAS  Google Scholar 

  64. Lavalette S, Raoul W, Houssier M, Camelo S, Levy O, Calippe B, Jonet L, Behar-Cohen F, Chemtob S, Guillonneau X et al (2011) Interleukin-1β inhibition prevents choroidal neovascularization and does not exacerbate photoreceptor degeneration. Am J Pathol 178:2416–2423

    Article  PubMed  CAS  Google Scholar 

  65. Arend WP, Palmer G, Gabay C (2008) IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 223:20–38

    Article  PubMed  CAS  Google Scholar 

  66. Tak PP, Bacchi M, Bertolino M (2006) Pharmacokinetics of IL-18 binding protein in healthy volunteers and subjects with rheumatoid arthritis or plaque psoriasis. Eur J Drug Metab Pharmacokinet 31:109–116

    Article  PubMed  CAS  Google Scholar 

  67. von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL, Chrabieh M, Mustapha IB, Ghandil P, Camcioglu Y et al (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321:691–696

    Article  Google Scholar 

  68. Gruver AL, Hudson LL, Sempowski GD (2007) Immunosenescence of ageing. J Pathol 211:144–156

    Article  PubMed  CAS  Google Scholar 

  69. Dinarello CA (2006) Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr 83:447S–455S

    PubMed  CAS  Google Scholar 

  70. Watford WT, Moriguchi M, Morinobu A, O'Shea JJ (2003) The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev 14:361–368

    Article  PubMed  CAS  Google Scholar 

  71. Seddon JM, George S, Rosner B (2006) Cigarette smoking, fish consumption, omega-3 fatty acid intake, and associations with age-related macular degeneration: the US Twin Study of Age-Related Macular Degeneration. Arch Ophthalmol 124:995–1001

    Article  PubMed  CAS  Google Scholar 

  72. Zampros I, Praidou A, Brazitikos P, Ekonomidis P, Androudi S (2012) Antivascular endothelial growth factor agents for neovascular age-related macular degeneration. J Ophthalmol 2012:319728

    PubMed  Google Scholar 

  73. Bressler NM (2002) Early detection and treatment of neovascular age-related macular degeneration. J Am Board Fam Pract 15:142–152

    PubMed  Google Scholar 

  74. Saint-Geniez M, Maharaj AS, Walshe TE, Tucker BA, Sekiyama E, Kurihara T, Darland DC, Young MJ, D'Amore PA (2008) Endogenous VEGF is required for visual function: evidence for a survival role on müller cells and photoreceptors. PLoS One 3:e3554

    Article  PubMed  Google Scholar 

  75. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC et al (2013) NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493:674–678

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthew Campbell or Sarah L. Doyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, M., Doyle, S.L. An eye on the future of inflammasomes and drug development in AMD. J Mol Med 91, 1059–1070 (2013). https://doi.org/10.1007/s00109-013-1050-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-013-1050-0

Keywords

Navigation