Skip to main content
Log in

Structural insights into a human anti-IFN antibody exerting therapeutic potential for systemic lupus erythematosus

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Increasing evidences suggest that the type I interferon α (IFNα) plays a critical role in the etiopathogenesis of systemic lupus erythematosus (SLE), which makes it a promising therapeutic target for the treatment of the disease. By screening a large size non-immune human antibody library, we have developed a human single-chain antibody (ScFv) AIFNα1bScFv01 and corresponding whole antibody AIFNα1bIgG01 to human interferon α1b (IFNα1b) with high specificity and high affinity. The IgG antibody could down-regulate the expression of ISG15 and IFIT-1 induced by either recombinant IFNα1b or naïve IFNα from SLE patients’ sera, and reduced total serum IgG and IgM antibodies level in a pristane-primed lupus-like mouse model. The crystal structure of AIFNα1bScFv01-IFNα1b complex solved to 2.8 Å resolution revealed that both Pro26-Gln40 region in loop AB and Glu147-Arg150 region in helix E of IFNα1b contribute to binding with AIFNα1bScFv01. Four residues of above two regions (Leu30, Asp32, Asp35 and Arg150) are critical for the formation of antigen–antibody complexes. AIFNα1bScFv01 shares partial epitopes of IFNα1b with its receptor IFNAR2 but with much higher binding affinity to IFNα1b than IFNAR2. Thus, AIFNα1bIgG01 exhibits its neutralizing activity through competition with IFNAR2 to bind with IFNα and prevents the activation of IFNα-mediated signaling pathway. Our results highlight the potential use of the human antibody for modulating the activity of IFNα in SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giffords ED (2003) Understanding and managing systemic lupus erythematosus (SLE). Soc Work Health Care 37:57–72

    Article  PubMed  Google Scholar 

  2. Lahita R (1999) The clinical presentation of systemic lupus erythematosus. Academic, San Diego

    Google Scholar 

  3. Flesher DL, Sun X, Behrens TW, Graham RR, Criswell LA (2010) Recent advances in the genetics of systemic lupus erythematosus. Expert Rev Clin Immunol 6:461–479

    Article  PubMed  Google Scholar 

  4. Obermoser G, Pascual V (2010) The interferon-alpha signature of systemic lupus erythematosus. Lupus 19:1012–1019

    Article  PubMed  CAS  Google Scholar 

  5. Rahman A, Isenberg DA (2008) Systemic lupus erythematosus. N Engl J Med 358:929–939

    Article  PubMed  CAS  Google Scholar 

  6. Ronnblom L, Elkon KB (2010) Cytokines as therapeutic targets in SLE. Nat Rev Rheumatol 6:339–347

    Article  PubMed  Google Scholar 

  7. Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25:383–392

    Article  PubMed  CAS  Google Scholar 

  8. Pascual V, Farkas L, Banchereau J (2006) Systemic lupus erythematosus: all roads lead to type I interferons. Curr Opin Immunol 18:676–682

    Article  PubMed  CAS  Google Scholar 

  9. Ronnblom L, Alm GV, Eloranta ML (2009) Type I interferon and lupus. Curr Opin Rheumatol 21:471–477

    Article  PubMed  Google Scholar 

  10. Bennett L, Palucka AK, Arce E, Cantrell V, Borvak J, Banchereau J, Pascual V (2003) Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J Exp Med 197:711–723

    Article  PubMed  CAS  Google Scholar 

  11. Reddy MV, Velazquez-Cruz R, Baca V, Lima G, Granados J, Orozco L, Alarcon-Riquelme ME (2007) Genetic association of IRF5 with SLE in Mexicans: higher frequency of the risk haplotype and its homozygozity than Europeans. Hum Genet 121:721–727

    Article  PubMed  Google Scholar 

  12. Kim T, Kanayama Y, Negoro N, Okamura M, Takeda T, Inoue T (1987) Serum levels of interferons in patients with systemic lupus erythematosus. Clin Exp Immunol 70:562–569

    PubMed  CAS  Google Scholar 

  13. Pascual V, Allantaz F, Patel P, Palucka AK, Chaussabel D, Banchereau J (2008) How the study of children with rheumatic diseases identified interferon-alpha and interleukin-1 as novel therapeutic targets. Immunol Rev 223:39–59

    Article  PubMed  CAS  Google Scholar 

  14. Chuntharapai A, Lai J, Huang X, Gibbs V, Kim KJ, Presta LG, Stewart TA (2001) Characterization and humanization of a monoclonal antibody that neutralizes human leukocyte interferon: a candidate therapeutic for IDDM and SLE. Cytokine 15:250–260

    Article  PubMed  CAS  Google Scholar 

  15. Sheets MD, Amersdorfer P, Finnern R, Sargent P, Lindquist E, Schier R, Hemingsen G, Wong C, Gerhart JC, Marks JD (1998) Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc Natl Acad Sci U S A 95:6157–6162

    Article  PubMed  CAS  Google Scholar 

  16. Liang M, Dübel S, Li D, Queitsch I, Li W, Bautz EK (2001) Baculovirus expression cassette vectors for rapid production of complete human IgG from phage display selected antibody fragments. J Immunol Methods 247:119–130

    Article  PubMed  CAS  Google Scholar 

  17. Long F, Vagin AA, Young P, Murshudov GN (2008) BALBES: a molecular-replacement pipeline. Acta Crystallogr D: Biol Crystallogr 64:125–132

    Article  Google Scholar 

  18. Gong B, Wang S, Li C, Wang Y, Zhang Q, Chen Z, Sun L, Liang M, Sun Z, Li D (2009) Antibody against human interferon alb from human synthetic recombinant antibody library. Chin Med Biotechnol 4:184–189 [in Chinese]

    Google Scholar 

  19. Otwinowski ZMW (1997) Processing of X-ray diffraction data collected in oscillation mode. Academic, New York

    Google Scholar 

  20. Hillig RC, Urlinger S, Fanghanel J, Brocks B, Haenel C, Stark Y, Sulzle D, Svergun DI, Baesler S, Malawski G et al (2008) Fab MOR03268 triggers absorption shift of a diagnostic dye via packaging in a solvent-shielded Fab dimer interface. J Mol Biol 377:206–219

    Article  PubMed  CAS  Google Scholar 

  21. Niemi MH, Takkinen K, Amundsen L, Söderlund H, Rouvinen J, Höyhtyä M (2010) The testosterone binding mechanism of an antibody derived from a naïve human scFv library. J Mol Recog 24:209–219

    Article  Google Scholar 

  22. Radhakrishnan R, Walter LJ, Subramaniam PS, Johnson HM, Walter MR (1999) Crystal structure of ovine interferon-tau at 2.1 Å resolution. J Mol Biol 286:151–162

    Article  PubMed  CAS  Google Scholar 

  23. He Y, Yao DQ, Gu YX, Lin ZJ, Zheng CD, Fan HF (2007) OASIS and molecular-replacement model completion. Acta Crystallogr D: Biol Crystallogr 63:793–799

    Article  Google Scholar 

  24. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D: Biol Crystallogr 66:486–501

    Article  CAS  Google Scholar 

  25. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D: Biol Crystallogr 53:240–255

    Article  CAS  Google Scholar 

  26. Terwilliger TC, Grosse-Kunstleve RW, Afonine PV, Moriarty NW, Zwart PH, Hung LW, Read RJ, Adams PD (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D: Biol Crystallogr 64:61–69

    Article  Google Scholar 

  27. Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D: Biol Crystallogr 66:12–21

    Article  Google Scholar 

  28. Du W, Wang S, Sun Z, Yu W (2006) Construction of a fully synthetic human phage display antibody library. Bull Acad Mil Med Sci 30(319–322):328 [in Chinese]

    Google Scholar 

  29. Jaks E, Gavutis M, Uze G, Martal J, Piehler J (2007) Differential receptor subunit affinities of type I interferons govern differential signal activation. J Mol Biol 366:525–539

    Article  PubMed  CAS  Google Scholar 

  30. Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein interfaces. J Mol Biol 234:946–950

    Article  PubMed  CAS  Google Scholar 

  31. Quadt-Akabayov SR, Chill JH, Levy R, Kessler N, Anglister J (2006) Determination of the human type I interferon receptor binding site on human interferon-alpha2 by cross saturation and an NMR-based model of the complex. Protein Sci 15:2656–2668

    Article  PubMed  CAS  Google Scholar 

  32. Thomas C, Moraga I, Levin D, Krutzik PO, Podoplelova Y, Trejo A, Lee C, Yarden G, Vleck SE, Glenn JS et al (2011) Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 146:621–632

    Article  PubMed  CAS  Google Scholar 

  33. Yao Y, Richman L, Higgs BW, Morehouse CA, de los Reyes M, Brohawn P, Zhang J, White B, Coyle AJ, Kiener PA et al (2009) Neutralization of interferon-alpha/beta-inducible genes and downstream effect in a phase I trial of an anti-interferon-alpha monoclonal antibody in systemic lupus erythematosus. Arthritis Rheum 60:1785–1796

    Article  PubMed  CAS  Google Scholar 

  34. Nolte KU, Gunther G, von Wussow P (1996) Epitopes recognized by neutralizing therapy-induced human anti-interferon-alpha antibodies are localized within the N-terminal functional domain of recombinant interferon-alpha 2. Eur J Immunol 26:2155–2159

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Ministry of Science and Technology of China (grants 2009AA02Z109, 2009DFB30310 and 2009CB918803) and National Nature Science Foundation of China (grants 31070660, 31021062 and 81072449); Crystallographic data were collected at beamline 19-ID of APS (Argonne National Laboratory)

Disclosure statement

The authors declare no conflict of interest in connection with the submitted material.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Wang, Zhi-Jie Liu or Mifang Liang.

Additional information

S. Ouyang, B. Gong, J. Z. Li and L. X. Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, S., Gong, B., Li, JZ. et al. Structural insights into a human anti-IFN antibody exerting therapeutic potential for systemic lupus erythematosus. J Mol Med 90, 837–846 (2012). https://doi.org/10.1007/s00109-012-0866-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-012-0866-3

Keywords

Navigation