Skip to main content
Log in

Homocysteine enhances cell proliferation in hepatic myofibroblastic stellate cells

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Homocysteine is an intermediate in sulfur amino acid metabolism, which takes place mainly in the liver. Recent studies have shown that hyperhomocysteinemia in patients and murine models develop hepatic fibrosis. To define mechanisms underlying homocysteine-induced hepatic fibrosis, the effect of homocysteine on hepatic stellate cell (HSC) proliferation was examined. In the present study, homocysteine promoted proliferation in myofibroblastic HSCs. Homocysteine elicited a transient formation of reactive oxygen species (ROS). The initial ROS activated extracellular signal-regulated kinase and p38 mitogen-activated protein kinase, which were involved in the activation of NAD(P)H oxidases and the generation of more ROS. The activation of NAD(P)H oxidases resulted from upregulation of the expression of p22phox and the phosphorylation of p47phox. The ROS derived from NAD(P)H oxidases activated the PI3K/Akt pathway, thus promoting cellular proliferation in HSCs. These findings provide a mechanistic explanation for the development and progression of hepatic fibrosis in hyperhomocysteinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zou CG, Banerjee R (2005) Homocysteine and redox signaling. Antioxid Redox Signal 7:547–559

    Article  PubMed  CAS  Google Scholar 

  2. Papatheodorou L, Weiss N (2007) Vascular oxidant stress and inflammation in hyperhomocysteinemia. Antioxid Redox Signal 9:1941–1958

    Article  PubMed  CAS  Google Scholar 

  3. Tsai JC, Perrella MA, Yoshizumi M et al (1994) Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci U S A 91:6369–6373

    Article  PubMed  CAS  Google Scholar 

  4. Tyagi SC (1998) Homocysteine redox receptor and regulation of extracellular matrix components in vascular cells. Am J Physiol Cell Physiol 274:C396–C405

    CAS  Google Scholar 

  5. Li N, Chen YF, Zou AP (2002) Implications of hyperhomocysteinemia in arterial and glomerular sclerosis in hypertension. Hypertension 39:443–448

    Article  PubMed  CAS  Google Scholar 

  6. Yang ZZ, Zou AP (2003) Homocysteine enhances TIMP-1 expression and cell proliferation associated with NADH oxidase in rat mesangial cells. Kidney Int 63:1012–1020

    Article  PubMed  CAS  Google Scholar 

  7. Avila MA, Berasain C, Torres L et al (2000) Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol 33:907–914

    Article  PubMed  CAS  Google Scholar 

  8. Sakuta H, Suzuki T (2005) Alcohol consumption and plasma homocysteine. Alcohol 37:73–77

    Article  PubMed  CAS  Google Scholar 

  9. Ji C, Mehrian-Shai R, Chan C et al (2005) Role of chop in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcohol Clin Exp Res 29:1496–1503

    Article  PubMed  CAS  Google Scholar 

  10. Varela-Moreiras G, Alonso-Aperte E, Rubio M et al (1995) Carbon tetrachloride-induced hepatic injury is associated with global DNA hypomethylation and homocysteinemia: effect of S-adenosylmethionine treatment. Hepatology 22:1310–1315

    Article  PubMed  CAS  Google Scholar 

  11. Adinolfi LE, Ingrosso D, Cesaro G et al (2005) Hyperhomocysteinemia and the MTHFR C677T polymorphism promote steatosis and fibrosis in chronic hepatitis C patients. Hepatology 41:995–1003

    Article  PubMed  CAS  Google Scholar 

  12. Namekata K, Enokido Y, Ishii I et al (2004) Abnormal lipid metabolism in cystathionine β-synthase-deficient mice, an animal model for hyperhomocysteinemia. J Biol Chem 279:52961–52969

    Article  PubMed  CAS  Google Scholar 

  13. Robert K, Nehme J, Bourdon E et al (2005) Cystathionine β-synthase deficiency promotes oxidative stress, fibrosis and steatosis in mice liver. Gastroenterology 128:1405–1415

    Article  PubMed  CAS  Google Scholar 

  14. Torres L, Garcia-Trevijano ER, Rodriguez JA et al (1999) Induction of TIMP-1 expression in rat hepatic stellate cells and hepatocytes: a new role for homocysteine in liver fibrosis. Biochim Biophys Acta 1455:12–22

    PubMed  CAS  Google Scholar 

  15. Garcia-Tevijano ER, Berasain C, Rodriguez JA et al (2001) Hyperhomocysteinemia in liver cirrhosis: mechanisms and role on vascular and hepatic fibrosis. Hypertension 38:1217–1221

    Article  PubMed  CAS  Google Scholar 

  16. Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275:2247–2250

    Article  PubMed  CAS  Google Scholar 

  17. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115:209–218

    PubMed  CAS  Google Scholar 

  18. Friedman SL (2008) Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev 88:125–172

    Article  PubMed  CAS  Google Scholar 

  19. Adachi T, Togashi H, Suzuki A et al (2005) NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells. Hepatology 41:1272–1281

    Article  PubMed  CAS  Google Scholar 

  20. Galli A, Svegliati-Baroni G, Ceni E et al (2005) Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology 41:1074–1084

    Article  PubMed  CAS  Google Scholar 

  21. Shimizu I, Mizobuchi Y, Yasuda M et al (1999) Inhibitory effect of oestradiol on activation of rat hepatic stellate cells in vivo and in vitro. Gut 44:127–136

    Article  PubMed  CAS  Google Scholar 

  22. Vogel S, Piantedosi R, Frank J et al (2000) An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J. Lipid Res 41:882–893

    PubMed  CAS  Google Scholar 

  23. Zhang Q, Zeng X, Guo J et al (2001) Effects of homocysteine on murine splenic B lymphocyte proliferation and its signal transduction mechanism. Cardiovasc Res 52:328–336

    Article  PubMed  CAS  Google Scholar 

  24. Liu X, Luo F, Li J et al (2008) Homocysteine induces connective tissue growth factor expression in vascular smooth muscle cells. J Thromb Haemost 6:184–192

    PubMed  CAS  Google Scholar 

  25. Zeng X, Dai J, Remick DG et al (2003) Homocysteine mediated expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human monocytes. Circ Res 93:311–320

    Article  PubMed  CAS  Google Scholar 

  26. Koh JM, Lee YS, Kim YS et al (2006) Homocysteine enhances bone resorption by stimulation of osteoclast formation and activity through increased intracellular ROS generation. J Bone Miner Res 21:1003–1011

    Article  PubMed  CAS  Google Scholar 

  27. Bataller R, Schwabe RF, Choi YH et al (2003) NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J Clin Invest 112:1383–1394

    PubMed  CAS  Google Scholar 

  28. Ushio-Fukai M, Zafari AM, Fukui T et al (1996) p22phox is a critical component of superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 271:23317–23321

    Article  PubMed  CAS  Google Scholar 

  29. Becker JS, Adler A, Schneeberger A et al (2005) Hyperhomocysteinemia, a cardiac metabolic disease: role of nitric oxide and the p22phox subunit of NADPH oxidase. Circulation 111:2112–2118

    Article  PubMed  CAS  Google Scholar 

  30. Siow YL, Au-Yeung KK, Woo CW (2006) Homocysteine stimulates phosphorylation of NADPH oxidase p47phox and p67phox subunits in monocytes via protein kinase C beta activation. Biochem J 398:73–82

    Article  PubMed  CAS  Google Scholar 

  31. Stolk J, Hiltermann TJ, Dijkman JH et al (1994) Characteristics of the inhibition of NAD(P)H oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. Am J Respir Cell Mol Biol 11:95–102

    PubMed  CAS  Google Scholar 

  32. Edirimanne VER, Woo CWH, Siow YL et al (2007) Homocysteine stimulates NADPH oxidase-mediated superoxide production leading to endothelial dysfunction in rats. Can J Physiol Pharmacol 85:1236–1247

    Article  PubMed  CAS  Google Scholar 

  33. Akasaka K, Akasaka N, Luozzo GD et al (2005) Homocysteine promotes p38-dependent chemotaxis in bovine aortic smooth muscle cells. J Vasc Surg 41:517–522

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (2007CB411600) from the National Basic Research Program of China (973 Program; to K-Q Z), a grant (30560036) from the National Natural Science Foundation of China (to C-G Z), and a grant (2006-33) from the Scientific Research Foundation for Returned Scholars, Ministry of Education of China (to C-G Z). We thank Dr. L-M Xu (Shanghai University of CTM) for the generous gift of HSC-T6 cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Qin Zhang.

Additional information

Cheng-Gang Zou and Shun-Yu Gao contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Homocysteine upregulates the protein levels of PCNA. HSCs were incubated with 100 μM homocysteine for 8 h. The protein levels were detected by Western blotting. The blot is representative of three independent experiments (DOC 37.5 KB)

Figure S2

Homocysteine promotes proliferation in HSC-T6 cells. HSC-T6 cells were incubated with varying concentrations of homocysteine (Hcy) for 24 h. The cell proliferation was assessed by [3H]-thymidine incorporation into DNA. These results are means ± SD of five experiments. *P < 0.05 versus control (DOC 25.5 KB)

Figure S3

(PDF 128 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, CG., Gao, SY., Zhao, YS. et al. Homocysteine enhances cell proliferation in hepatic myofibroblastic stellate cells. J Mol Med 87, 75–84 (2009). https://doi.org/10.1007/s00109-008-0407-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0407-2

Keywords

Navigation