Skip to main content

Advertisement

Log in

Elevated microsatellite alterations at selected tetranucleotides (EMAST) and mismatch repair gene expression in prostate cancer

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Elevated microsatellite alterations at selected tetranucleotides (EMAST), a new form of microsatellite instability (MSI) affecting tetranucleotide repeats, was recently described to be frequent in several tumor types (e.g., bladder, lung, ovarian, and skin cancers). EMAST was found as a form of microsatellite alteration distinct from the MSI phenotype in hereditary nonpolyposis colorectal cancer (HNPCC)-related tumors which mostly affects mono- and dinucleotide repeats. To date, no study has investigated the role of EMAST in prostate cancer. We therefore analyzed 81 prostate tumors using 10 markers frequently detecting EMAST in other cancer types and the National Cancer Institute-consensus panel for HNPCC detection plus BAT40. In addition, we investigated p53 gene alterations [loss of heterozygosity (LOH)] and the expression of p53 and the mismatch repair (MMR) genes hMLH1 and hMSH2 on tissue microarrays. EMAST was detected in 4/81 (5%) cases and MSI in 6/79 (7.6%) cases. LOH of p53 was found in 9/45 (20%) informative cases. There was no correlation between MSI status and the histopathological or molecular characteristics of the tumors. Immunohistochemistry revealed p53 positivity in 5/61 (8%) tumors. There was a significant correlation between tumors showing a recurrence within 3 years after treatment and p53 positivity (p=0.029). Reduced hMLH1 expression, but no complete loss, was detected in 9/41 (22%) tumors without any correlations to histopathological or clinical features. Analysis of hMSH2 expression was available from 58/81 (72%) tumors. Staining intensity was as follows: negative in 7/58 (12%), weak staining in 16/58 (27.5%) samples, moderate staining in 19/58 (33%) samples, and strong staining in 16/58 (27.5%) samples. When negative/weak staining and moderate/strong staining were considered as two groups, there was a significant association between hMSH2 expression and tumor recurrence (p=0.039). In conclusion, our data show that MSI and EMAST are infrequent but distinct patterns of MSI in prostate tumors not related to MMR defects, p53 alterations, and histopathological characteristics. p53 positivity and moderate to strong hMSH2 expression of prostate tumors are correlated with early disease recurrence and indicate an unfavorable clinical course of the disease. These two genes could be useful biomarkers for the prediction of patients’ outcome and should be analyzed in prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Varmus HE (1984) The molecular genetics of cellular oncogenes. Annu Rev Genet 18:553–612

    Article  PubMed  CAS  Google Scholar 

  2. Weinberg RA (1991) Tumor-suppressor genes. Science 254:1238–1246

    Google Scholar 

  3. Ionov P, Perinado MA, Malkhosyan S, Shibata D, Perucho M (1993) Ubiquitious somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561

    Article  PubMed  CAS  Google Scholar 

  4. Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 51:3075–3079

    PubMed  CAS  Google Scholar 

  5. Loeb KR, Loeb LA (2000) Significance of multiple mutations in cancer. Carcinogenesis 21:379–385

    Article  PubMed  CAS  Google Scholar 

  6. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649

    Article  PubMed  CAS  Google Scholar 

  7. Duval A, Iacopetta B, Ranzani GN, Lothe RA, Thomas G, Hamlin R (1999) Variable mutation frequencies in coding repeats of TCF-4 and other target genes in colon, gastric and endometrial carcinoma showing microsatellite instability. Oncogene 18:6806–6809

    Article  PubMed  CAS  Google Scholar 

  8. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Biags MA, Fodde R, Ranzani GN, Srivastava S (1998) A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    PubMed  CAS  Google Scholar 

  9. Danaee H, Nelson HH, Karagas MR, Schned AR, Ashok TDS, Hirao T, Perry AE, Kelsey KT (2002) Microsatellite instability at tetranucleotide repeats in skin and bladder cancer. Oncogene 21:4894–4899

    Article  PubMed  CAS  Google Scholar 

  10. Catto JWF, Azzouzi AR, Amira N, Rehman I, Feeley KM, Cross SS, Fromont G, Sibony M, Hamdy FC, Cussenot O, Meith M (2003) Distinct patterns of microsatellite instability are seen in tumours of the urinary tract. Oncogene 22:8699–8706

    Article  PubMed  CAS  Google Scholar 

  11. Ahrendt SA, Decker PA, Doffek K, Wang B, Xu L, Demeure MJ, Jen J, Sidransky D (2000) Microsatellite instability at selected tetranucleotide repeats is associated with p53 mutations in non-small lung cancer. Cancer Res 60:2488–2491

    PubMed  CAS  Google Scholar 

  12. Singer G, Kallinowski T, Hartmann A, Dietmaier W, Wild PJ, Schraml P, Sauter G, Mihatsch MJ, Moch H (2004) Different types of microsatellite instability in ovarian carcinoma. Int J Cancer 112:643–646

    Article  PubMed  CAS  Google Scholar 

  13. Quinn DI, Henshall SM, Sutherland RL (2005) Molecular markers of prostate cancer outcome. Eur J Cancer 41:858–887

    Article  PubMed  CAS  Google Scholar 

  14. von Knobloch R, Konrad L, Barth PJ, Brandt H, Wille S, Heidenreich A, Moll R, Hofmann R (2004) Genetic pathways and new progression markers for prostate cancer suggested by microsatellite allelotyping. Clin Cancer Res 10:1064–1073

    Article  Google Scholar 

  15. Chen Y, Wang J, Fraig MM, Henderson K, Bissada NK, Watson DK, Schweinfest CW (2003) Alterations in PMS2, MSH2 and MLH1 expression in human prostate cancer. Int J Oncol 22:1033–1043

    PubMed  CAS  Google Scholar 

  16. Valesco A, Hewitt SM, Alber PS, Saboorian MH, Rosenberg H, Martinez C, Sagalowsky AI, McConnell JD, Linehan WM, Leach FS (2002) Differential expression of the mismatch repair gene hMSH2 in malignant prostate tissue is associated with cancer recurrence. Cancer 94:690–699

    Article  CAS  Google Scholar 

  17. Prtilo A, Leach FS, Markwalder R, Kappeler A, Burkhard FC, Cecchini MG, Studer UE, Thalmann GN (2005) Tissue microarray analysis of hMSH2 expression predicts outcome in men with prostate cancer. J Urol 174:1814–1818

    Article  PubMed  CAS  Google Scholar 

  18. Epstein JI, Algaba F, Allsbrook WC, Bastacky S et al (2004) Tumours of the prostate. In: Eble JN, Sauter G, Epstein JI, Sesterhenn IA (eds) World Health Organization, classification of tumours. Pathology and genetic. Tumours of the urinary system and male genital organs. IARC, Lyon, pp 159–216

    Google Scholar 

  19. Sobin LH, Wittekind C (1997) TNM classification of malignant tumours. Wiley-Liss, New York

    Google Scholar 

  20. Stoehr R, Zietz S, Burger M, Filbeck T, Denzinger S, Obermann EC, Hammerschmied C, Wieland WF, Knuechel R, Hartmann A (2005) Deletions of chromosomes 9 and 8p in histologically normal urothelium in patients with bladder cancer. Eur Urol 47:58–63

    Article  PubMed  CAS  Google Scholar 

  21. Hartmann A, Stoehr R, Wild PJ, Knuechel R (2005) Microdissection for detecting genetic alterations in early and advanced human urinary bladder cancer. Methods Mol Biol 239:79–92

    Google Scholar 

  22. Futureal P, Barret JC, Wiesman RW (1991) An alu polymorphism intragenic to the TP53 gene. Nucleic Acids Res 19:6977

    Google Scholar 

  23. Schlegel J, Bocker T, Zirngibl H, Hofstaedter F, Ruschoff J (1995) Detection of microsatellite instability in human colorectal carcinomas using a non-radioactive PCR-based screening technique. Virchows Arch 426:223

    Article  PubMed  CAS  Google Scholar 

  24. Kasper G, Weiser AA, Rump A, Sparbier K, Dahl E, Hartmann A, Wild P, Schwidetzky U, Castanos-Velez E, Lehmann K (2005) Expression levels of putative zinc transporter LIV-1 are associated with a better outcome of breast cancer patients. Int J Cancer 117:961–973

    Article  PubMed  CAS  Google Scholar 

  25. Catto JWF, Xinarianos G, Burton JL, Meuth M, Hamdy FC (2003) Differential expression of hMLH1 and hMSH2 is related to bladder cancer grade, stage and prognosis but not microsatellite instability. Int J Cancer 105:484–490

    Article  PubMed  CAS  Google Scholar 

  26. Dietmeier W, Wallinger S, Bocker T, Kullmann F, Fishel R, Ruschoff J (1997) Diagnostic microsatellite instability. Definition and correlation with mismatch repair protein expression. Cancer Res 57:4749–4756

    Google Scholar 

  27. Samowitz W, Holden JA, Curtin K, Edwards SL, Walker AR, Lin HA, Robertson MA, Nichols MF, Gruenthal KM, Lynch BJ, Leppert MF, Slattery ML (2001) Inverse relationship between microsatellite instability and K-ras and p53 gene alterations in colon cancer. Am J Pathol 158:1517–1524

    PubMed  CAS  Google Scholar 

  28. Xu LH, Chow J, Bonacum J, Eisenberger C, Ahrendt SA, Spafford M, Wu L, Lee SM, Piantadosi S, Tockman MS, Sidransky D, Jen J (2001) Microsatellite instability at AAAG repeat sequence in respiratory tract cancers. Int J Cancer 91:200–204

    Article  PubMed  CAS  Google Scholar 

  29. Ahman AK, Jonsson BA, Damber JE, Bergh A, Groenberg H (2001) Low frequency of microsatellite instability in hereditary prostate cancer. BJU Int 87:334–338

    Article  PubMed  CAS  Google Scholar 

  30. Gao X, Wu N, Grignon D, Zacharek A, Liu H, Salkowski A, Li G, Sakr W, Sarkar F, Porter AT, Chen YQ, Honn KV (1994) High frequency of mutator phenotype in human prostatic adenocarcinoma. Oncogene 9:2999–3003

    PubMed  CAS  Google Scholar 

  31. Rohrbach H, Haas CJ, Baretton GB, Hirschmann A, Diebold J, Behrendt RP, Loehrs U (1999) Microsatellite instability and loss of heterozygosity in prostatic carcinomas: comparison of primary tumors, and of corresponding recurrences after androgen-deprivation therapy and lymph-node metastases. Prostate 40:20–27

    Article  PubMed  CAS  Google Scholar 

  32. Lothe RA (1997) Microsatellite instability in human solid tumors. Mol Med Today 3:61–68

    Article  PubMed  CAS  Google Scholar 

  33. Kloor M, Schwitalle Y, von Knebel-Doeberitz M, Wentzensen N (2006) Tetranucleotide repeats in coding regions: no evidence for involvement in EMAST carcinogenesis. J Mol Med 84(4):329–333 DOI 10.1007/s00109-005-0012-6

    Article  PubMed  CAS  Google Scholar 

  34. Brooks JD, Bova GS, Ewing CM, Piantadosi S, Carter BS, Robinson JC, Epstein JI, Isaacs WB (1996) An uncertain role for p53 gene alterations in human prostate cancers. Cancer Res 56:3814–3822

    PubMed  CAS  Google Scholar 

  35. Fan K, Dao DD, Schutz M, Fink LM (1994) Loss of heterozygosity and overexpression of p53 gene in human primary prostatic adenocarcinoma. Diagn Mol Pathol 3:265–270

    Article  PubMed  CAS  Google Scholar 

  36. Massenkeil G, Oberhuber H, Hailemariam S, Sulser T, Diener PA, Bannwart F, Schafer R, Schwarte-Waldhoff I (1994) P53 mutations and loss of heterozygosity on chromosomes 8p, 16q, 17p, and 18q are confined to advanced prostate cancer. Anticancer Res 14:2785–2790

    PubMed  CAS  Google Scholar 

  37. Macera MJ, Godec CJ, Sharma N, Verma RS (1998) Loss of heterozygosity of the TP53 tumor suppressor gene and detection of point mutations by the nonisotopic RNAse cleavage assay in prostate cancer. Cancer Genet Cytogenet 108:42–47

    Article  Google Scholar 

  38. Wu YQ, Chen H, Rubin MA, Wojno KJ, Cooney KA (2001) Loss of heterozygosity of the putative prostate cancer susceptibility gene HPC2/ELAC2 is uncommon in sporadic and familial prostate cancer. Cancer Res 61:8651–8653

    PubMed  CAS  Google Scholar 

  39. Huges C, Murphy A, Martin C, Sheils O, O’Leary J (2005) Molecular pathology of prostate cancer. J Clin Pathol 58:673–684

    Article  CAS  Google Scholar 

  40. Inoue T, Segawa T, Shiraishi T, Yoshida T, Toda Y, Yamada T, Kinukawa N, Kinoshita H, Kamoto T, Ogawa O (2005) Androgen receptor, Ki67, and p53 expression in radical prostatectomy specimens predict treatment failure in Japanese population. Urology 66:332–337

    Article  PubMed  Google Scholar 

  41. Revelos K, Petraki C, Gregorakis A, Scorilas A, Papanastasiou P, Koutsilieris M (2005) Immunohistochemical expression of Bcl2 is an independent predictor of time-to-biochemical failure in patients with clinically localized prostate cancer following radical prostatectomy. Anticancer Res 25:3132–3133

    Google Scholar 

  42. Moul JW, Merseburger AS, Srivastava S (2002) Molecular markers in prostate cancer: the role in preoperative staging. Clin Prostate Cancer 1:42–50

    PubMed  CAS  Google Scholar 

  43. Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB, Nelson G (2004) Hypermethylation of CpG islands in primary and metastatic prostate cancer. Cancer Res 64:1975–1986

    Article  PubMed  CAS  Google Scholar 

  44. Strom SS, Spitz MR, Yamamura Y, Babaian RJ, Scardino PT, Wei Q (2001) Reduced expression of hMSH2 and hMLH1 and risk of prostate cancer: a case-control study. Prostate 47:269–275

    Article  PubMed  CAS  Google Scholar 

  45. Lopez-Beltran A, Mikuz G, Luque RJ, Mazzucchelli R, Montironi R (2005) Current practice of Gleason grading of prostate carcinoma. Virchows Arch 23:1–8

    Google Scholar 

  46. Leach FS, Hsieh JT, Molberg K, Saboorian MH, McConnell JD, Sagalowsky AI (2000) Expression of human mismatch repair gene hMSH2: a potential marker for urothelial malignancy. Cancer 88:2333–2341

    Article  PubMed  CAS  Google Scholar 

  47. Rass K, Gutwein P, Welter C, Meineke V, Tilgen W, Reichrath J (2001) DNA mismatch repair enzyme hMSH2 in malignant melanoma: increased immunreactivity as compared to acquired melanocytic nevi and strong mRNA expression in melanoma cell lines. Histochem J 33:459–467

    Article  PubMed  CAS  Google Scholar 

  48. Castrilli G, Fabiano A, La Torre G, Marigo L, Piantelli C, Perfetti G, Ranelletti FO, Piantelli M (2002) Expression of hMSH2 and hMLH1 proteins of the human DNA mismatch repair system in salivary gland tumors. J Oral Pathol Med 31:234–238

    Article  PubMed  CAS  Google Scholar 

  49. Srivastava T, Chattopadhyay P, Mahapatra AK, Sarkar C, Sinha S (2004) Increased hMSH2 protein expression in glioblastoma multiforme. J Neurooncol 66:51–57

    Article  PubMed  Google Scholar 

  50. Giarnieri E, Consorti F, Lorenzotti A, Luzzatto L, Soda G, Bosco D, Vecchione A, Midiri G (2000) Altered expression of hMSH2 in sporadic colorectal cancer, surrounding mucosa and at distant colonic mucosa. Anticancer Res 20:3829–3831

    PubMed  CAS  Google Scholar 

  51. Marra G, Chang CL, Laghi LA, Chauhan DP, Young D, Boland CR (1996) Expression of MutS homolog 2 (hMSH2) protein in resting and proliferating cells. Oncogene 13:2189–2196

    PubMed  CAS  Google Scholar 

  52. Linja MJ, Savinainen KJ, Tammela TL, Isola JJ, Visakorpi T (2003) Expression of ERalpha and ERbeta in prostate cancer. Prostate 55:180–186

    Article  PubMed  CAS  Google Scholar 

  53. Bonkhoff H, Motherby H, Fixemer T (2003) New insights into the role of estrogens and their receptors in prostate cancer. Urologe A 12:1594–1601

    Article  Google Scholar 

  54. Wada-Hiraike O, Yano T, Nei T, Matsumoto Y, Nagasaka K, Takizawa S, Oishi H, Arimoto T, Nakagawa S, Yasugi T, Kato S, Taketani Y (2005) The DNA mismatch repair gene hMSH2 is a potent coactivator of oestrogen receptor alpha. Br J Cancer 92:2286–2291

    Article  PubMed  CAS  Google Scholar 

  55. Nanni S, Narducci M, Delle Pietra L, Moretti F, Grasselli A, De Carli P, Sacchi A, Pontecorvi A, Farsetti A (2002) Signaling through estrogen receptors modulates telomerase activity in human prostate cancer. J Clin Invest 110:219–227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Nina Niessl and Ms. Kerstin Reher for excellent technical assistance. This study was supported by a grant of the University of Regensburg to M. Burger (Regensburger Forschungsfoerderung in der Medizin).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Stoehr.

Additional information

Grant support: This study was supported by a grant from the University of Regensburg to Maximilian Burger (Regensburger Forschungsfoerderung in der Medizin: ReForM A).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burger, M., Denzinger, S., Hammerschmied, C.G. et al. Elevated microsatellite alterations at selected tetranucleotides (EMAST) and mismatch repair gene expression in prostate cancer. J Mol Med 84, 833–841 (2006). https://doi.org/10.1007/s00109-006-0074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-006-0074-0

Keywords