Skip to main content
Log in

Reduced stress tolerance of glutamine-deprived human monocytic cells is associated with selective down-regulation of Hsp70 by decreased mRNA stability

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In critically ill patients, clinicians observe a reverse correlation of survival and a decreased plasma concentration of the most abundant free amino acid, glutamine (Gln). However, in this context, the role of Gln remains largely elusive. Gln is used as an energy substrate by monocytes. Gln deprivation of these cells results in an increased susceptibility to cell stress and apoptosis, as well as in a reduced responsiveness to pro-inflammatory stimuli. We performed a systematic study to elucidate the molecular mechanism by which Gln depletion affects the heat stress response of the monocytic cell line U937. Proteomic analysis revealed that Gln depletion was associated with specific changes in the protein expression pattern. However, the overall level of tRNA-bound Gln remained unaffected. The stress protein heat shock protein (Hsp) 70 showed the highest reduction in protein synthesis. This was due to enhanced mRNA decay during Gln starvation while the transcriptional and the translational control of Hsp70 expression remained unchanged. A physiological Gln concentration and above was found to be necessary for maximum Hsp70 accumulation upon heat shock. Thus, the study shows a specific link between Gln metabolism and the regulation of heat shock proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oehler R, Roth E (2003) Regulative capacity of glutamine. Curr Opin Clin Nutr Metab Care 6(3):p. 277–282

    Article  PubMed  CAS  Google Scholar 

  2. Newsholme P, Gordon S, Newsholme EA (1987) Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochem J 242(3):p. 631–636

    PubMed  CAS  Google Scholar 

  3. Wilmore DW, Shabert JK (1998) Role of glutamine in immunologic responses. Nutrition 14(7–8):618–626

    Article  PubMed  CAS  Google Scholar 

  4. Roth E, Funovics J, Mühlbacher F, Schemper M, Mautitz W, Sporn P, Fritsch A (1982) Metabolic disorders in severe abdominal sepsis: glutamine deficiency in skeletal muscle. Clin Nutr 1:25

    Article  PubMed  CAS  Google Scholar 

  5. Haussinger D, Roth E, Lang F, Gerok W (1993) Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet 341(8856):1330–1332

    Article  PubMed  CAS  Google Scholar 

  6. Buchman AL (2001) Glutamine: commercially essential or conditionally essential? A critical appraisal of the human data. Am J Clin Nutr 74(1):25–32

    PubMed  CAS  Google Scholar 

  7. Stehle P, Zander J, Mertes N, Albers S, Puchstein C, Lawin P, Furst P (1989) Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet 1(8632):231–233

    Article  PubMed  CAS  Google Scholar 

  8. O’Riordain MG, Fearon KC, Ross JA, Rogers P, Falconer JS, Bartolo DC, Garden OJ, Carter DC (1994) Glutamine-supplemented total parenteral nutrition enhances T-lymphocyte response in surgical patients undergoing colorectal resection. Ann Surg 220(2):212–221

    Article  PubMed  CAS  Google Scholar 

  9. Tremel H, Kienle B, Weilemann LS, Stehle P, Furst P (1994) Glutamine dipeptide-supplemented parenteral nutrition maintains intestinal function in the critically ill. Gastroenterology 107(6):1595–1601

    PubMed  CAS  Google Scholar 

  10. van der Hulst RR, van Kreel BK, von Meyenfeldt MF, Brummer RJ, Arends JW, Deutz NE, Soeters PB (1993) Glutamine and the preservation of gut integrity. Lancet 341(8857):1363–1365

    Article  PubMed  Google Scholar 

  11. Goeters C, Wenn A, Mertes N, Wempe C, Van Aken H, Stehle P, Bone H-G (2002) Parenteral L-alanyl-L-glutamine improves 6-month outcome in critically ill patients. Crit Care Med 30(9):2032–2037

    Article  PubMed  CAS  Google Scholar 

  12. Powell-Tuck J, Jamieson CP, Bettany GE, Obeid O, Fawcett HV, Archer C, Murphy DL (1999) A double blind, randomised, controlled trial of glutamine supplementation in parenteral nutrition. Gut 45(1):82–88

    Article  PubMed  CAS  Google Scholar 

  13. Novak F, Heyland DK, Avenell A, Drover JW, Su X (2002) Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med 30(9):2022–9

    Article  PubMed  CAS  Google Scholar 

  14. Garrel D, Patenaude J, Nedelec B, Samson L, Dorais J, Champoux J, D’Elia M, Bernier J (2003) Decreased mortality and infectious morbidity in adult burn patients given enteral glutamine supplements: a prospective, controlled, randomized clinical trial. Crit Care Med 31(10):2444–2449

    Article  PubMed  CAS  Google Scholar 

  15. Spittler A, Winkler S, Götzinger P, Oehler R, Willheim M, Tempfer C, Weigel G, Függer R, Boltz Nitulescu G, Roth E (1995) Influence of glutamine on the phenotype and function of human monocytes. Blood 86(4):1564–1569

    PubMed  CAS  Google Scholar 

  16. Zellner M, Gerner C, Eliasen M, Wurm S, Pollheimer J, Spittler A, Brostjan C, Roth E, Oehler R (2003) Glutamine starvation of monocytes inhibits the ubiquitin-proteasome proteolytic pathway. Biochim Biophys Acta Mol Basis Dis 1638(2):138–148

    CAS  Google Scholar 

  17. Exner R, Weingartmann G, Spittler A, Brabec M, Roth E, Oehler R (2002) Glutamine deficiency renders human monocytic cells more susceptible to specific apoptosis triggers. Surgery 131(1):75–80

    Article  PubMed  Google Scholar 

  18. Fumarola C, Zerbini A, Guidotti GG (2001) Glutamine deprivation-mediated cell shrinkage induces ligand-independent CD95 receptor signaling and apoptosis. Cell Death Differ 8(10):1004–13

    Article  PubMed  CAS  Google Scholar 

  19. Ko YG, Kim EY, Kim T, Park H, Park HS, Choi EJ, Kim S (2001) Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J Biol Chem 276(8):6030–6

    Article  PubMed  CAS  Google Scholar 

  20. Oehler R, Hefel B, Roth E (1996) Determination of cell volume changes by an inulin-urea assay in 96-well plates: a comparison with coulter counter analysis. Anal Biochem 241(2):269–71

    Article  PubMed  CAS  Google Scholar 

  21. Jacquier-Sarlin MR, Jornot L, Polla BS (1995) Differential expression and regulation of hsp70 and hsp90 by phorbol esters and heat shock. J Biol Chem 270(23):14094–14099

    Article  PubMed  CAS  Google Scholar 

  22. Müllner E, Garcia-Sanz J (1997) Polysome gradients. In: Lefkovits I (ed) Manual of immunology methods, vol 1. Academic, London, pp 457–462

    Google Scholar 

  23. Oehler R, Pusch E, Zellner M, Dungel P, Hergovich N, Homoncik M, Eliasen M, Brabec M, Roth E (2001) Cell type specific variations in the induction of Hsp70 in human leukocytes by fever-like whole body hyperthermia. Cell Stress Chaperones 6(4):306–315

    Article  PubMed  CAS  Google Scholar 

  24. Murphy C, Newsholme P (1998) Importance of glutamine metabolism in murine macrophages and human monocytes to L-arginine biosynthesis and rates of nitrite or urea production. Clin Sci (Lond) 95(4):397–407

    Article  CAS  Google Scholar 

  25. Reeds PJ, Burrin DG (2001) Glutamine and the bowel. J Nutr 131(9):S2505–2508

    Google Scholar 

  26. Collins CL, Wasa M, Souba WW, Abcouwer SF (1998) Determinants of glutamine dependence and utilization by normal and tumor-derived breast cell lines. J Cell Physiol 176(1):166–178

    Article  PubMed  CAS  Google Scholar 

  27. Lamour V, Quevillon S, Diriong S, N’Guyen VC, Lipinski M, Mirande M (1994) Evolution of the Glx-tRNA synthetase family: the glutaminyl enzyme as a case of horizontal gene transfer. Proc Natl Acad Sci U S A 91(18):8670–8674

    Article  PubMed  CAS  Google Scholar 

  28. Dittmar K, Soerensen M, Elf J, Ehrenberg M, Pan T (2005) Selective charging of tRNA isoacceptors induced by amino-acid starvation. EMBO Rep 6(2):151–157

    Article  PubMed  CAS  Google Scholar 

  29. Kimball SR, Antonetti DA, Brawley RM, Jefferson LS (1991) Mechanism of inhibition of peptide chain initiation by amino acid deprivation in perfused rat liver. Regulation involving inhibition of eukaryotic initiation factor 2 alpha phosphatase activity. J Biol Chem 266(3):1969–1976

    PubMed  CAS  Google Scholar 

  30. Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG (1992) Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68(3):585–596

    Article  PubMed  CAS  Google Scholar 

  31. Kimball SR, Horetsky RL, Jefferson LS (1998) Implication of eIF2B rather than eIF4E in the regulation of global protein synthesis by amino acids in L6 myoblasts. J Biol Chem 273(47):30945–30953

    Article  PubMed  CAS  Google Scholar 

  32. Wang X, Campbell LE, Miller CM, Proud CG (1998) Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J 334(Pt 1):261–267

    PubMed  CAS  Google Scholar 

  33. Shah OJ, Anthony JC, Kimball SR, Jefferson LS (2000) 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab 279(4):E715–29

    PubMed  CAS  Google Scholar 

  34. Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C, Avruch J (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273(23):14484–14494

    Article  PubMed  CAS  Google Scholar 

  35. Bobrovnikova-Marjon EV, Marjon PL, Barbash O, Vander Jagt DL, Abcouwer SF (2004) Expression of angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 is highly responsive to ambient glutamine availability: role of nuclear factor-kappaB and activating protein-1. Cancer Res 64(14):4858–4869

    Article  PubMed  CAS  Google Scholar 

  36. Dellavalle RP, Petersen R, Lindquist S (1994) Preferential deadenylation of Hsp70 mRNA plays a key role in regulating Hsp70 expression in Drosophila melanogaster. Mol Cell Biol 14(6):3646–59

    Google Scholar 

  37. Theodorakis NG, Morimoto RI (1987) Posttranscriptional regulation of hsp70 expression in human cells: effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. Mol Cell Biol 7(12):4357–4368

    PubMed  CAS  Google Scholar 

  38. Zhao M, Tang D, Lechpammer S, Hoffman A, Asea A, Stevenson MA, Calderwood SK (2002) Double-stranded RNA-dependent protein kinase (pkr) is essential for thermotolerance, accumulation of HSP70, and stabilization of ARE-containing HSP70 mRNA during stress. J Biol Chem 277(46):44539–44547

    Article  PubMed  CAS  Google Scholar 

  39. Laroia G, Cuesta R, Brewer G, Schneider RJ (1999) Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science 284(5413):499–502

    Article  PubMed  CAS  Google Scholar 

  40. Kaarniranta K, Holmberg CI, Helminen HJ, Eriksson JE, Sistonen L, Lammi MJ (2000) Protein synthesis is required for stabilization of hsp70 mRNA upon exposure to both hydrostatic pressurization and elevated temperature. FEBS Lett 475(3):283–286

    Article  PubMed  CAS  Google Scholar 

  41. Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI, Sherman MY (1997) Hsp70 prevents activation of stress kinases. A novel pathway for cellular thermotolerance. J Biol Chem 272(29):18033–18037

    Article  PubMed  CAS  Google Scholar 

  42. Wischmeyer PE, Musch MW, Madonna MB, Thisted R, Chang EB (1997) Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol 272(4 Pt 1):G879–G884

    PubMed  CAS  Google Scholar 

  43. Cai JW, Hughes CS, Shen JW, Subjeck JR (1991) Induction of heat-shock proteins by glutamine. The ‘feeding effect’. FEBS Lett 288(1–2):229–232

    Article  PubMed  CAS  Google Scholar 

  44. Nissim I, States B, Hardy M, Pleasure J, Nissim I (1993) Effect of glutamine on heat-shock-induced mRNA and stress proteins. J Cell Physiol 157(2):313–8

    Article  PubMed  CAS  Google Scholar 

  45. Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B (2000) The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20(19):7146–7159

    Article  PubMed  CAS  Google Scholar 

  46. Beere HM, Green DR (2001) Stress management—heat shock protein-70 and the regulation of apoptosis. Trends Cell Biol 11(1):6–10

    Article  PubMed  CAS  Google Scholar 

  47. Weingartmann G, Oehler R, Derkits S, Oismuller C, Fugger R, Roth E (1999) HSP70 expression in granulocytes and lymphocytes of patients with polytrauma: comparison with plasma glutamine. Clin Nutr 18(2):121–124

    Article  PubMed  CAS  Google Scholar 

  48. Ribeiro SP, Villar J, Downey GP, Edelson JD, Slutsky AS (1994) Sodium arsenite induces heat shock protein-72 kilodalton expression in the lungs and protects rats against sepsis [see comments]. Crit Care Med 22(6):922–929

    Article  PubMed  CAS  Google Scholar 

  49. Hotchkiss R, Nunnally I, Lindquist S, Taulien J, Perdrizet G, Karl I (1993) Hyperthermia protects mice against the lethal effects of endotoxin. Am J Physiol 265:R1447–R1457

    PubMed  CAS  Google Scholar 

  50. Pollheimer J, Zellner M, Eliasen M, Roth E, Oehler R (2005) Increased susceptibility of glutamine-depleted monocytes to fever-range hyperthermia: the role of 70 kDa heat shock protein. Ann Surg 241(2):349–355

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Christine Brostjan and Dr. Susanne Oehler for helpful discussions and for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Oehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eliasen, M.M., Brabec, M., Gerner, C. et al. Reduced stress tolerance of glutamine-deprived human monocytic cells is associated with selective down-regulation of Hsp70 by decreased mRNA stability. J Mol Med 84, 147–158 (2006). https://doi.org/10.1007/s00109-005-0004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0004-6

Keywords

Navigation