Skip to main content
Log in

Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling

  • Invited Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

It is becoming clear that converging pathways coordinate early heart valve development and remodeling into functional valve leaflets. The integration of these pathways begins with macro and molecular interactions outside the cell in the extracellular matrix separating the myocardial and endocardial tissue components of the rudimentary heart. Such interactions regulate events at the cell surface through receptors, proteases, and other membrane molecules which in turn transduce signals into the cell. These signals trigger intracellular cascades that transduce cellular responses through both transcription factor and cofactor activation mediating gene induction or suppression. Chamber septation and valve formation occur from these coordinated molecular events within the endocardial cushions to sustain unidirectional blood flow and embryo viability. This review discusses the emerging connection between extracellular matrix and growth factor receptor signaling during endocardial cushion morphogenesis by highlighting the extracellular component, hyaluronan, and erbB receptor functions during early valve development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

AV :

Atrioventricular

BMP :

Bone morphogenetic protein

CHD :

Congenital heart defects

ECM :

Extracellular matrix

EGF :

Epidermal growth factor

EGFR :

Epidermal growth factor receptor

EMT :

Epithelial to mesenchymal transformation

ERK :

Extracellular signal regulated kinase

HA :

Hyaluronan

Has :

Hyaluronan synthase

HB :

Heparin-binding

HRG :

Heregulin

HSPG :

Heparan sulfate proteoglycan

MAP :

Mitogen-activated protein

OFT :

Outflow tract

TACE :

Tumor necrosis factor α converting enzyme

TGF :

Transforming growth factor

References

  1. Allan LD, Crawford DC, Chita SK, Anderson RH, Tynan MJ (1986) Familial recurrence of congenital heart disease in a prospective series of mothers referred for fetal echocardiography. Am J Cardiol 58:334–337

    CAS  PubMed  Google Scholar 

  2. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900

    Article  PubMed  Google Scholar 

  3. Srivastava D (2001) Genetic assembly of the heart: implications for congenital heart disease. Annu Rev Physiol 63:451–469

    Article  CAS  PubMed  Google Scholar 

  4. Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177

    Article  CAS  PubMed  Google Scholar 

  5. Epstein JA, Buck CA (2000) Transcriptional regulation of cardiac development: implications for congenital heart disease and DiGeorge syndrome. Pediatr Res 48:717–724

    CAS  PubMed  Google Scholar 

  6. Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407:221–226

    Google Scholar 

  7. Chien KR, Olson EN (2002) Converging pathways and principles in heart development and disease: CV@CSH. Cell 110:153–162

    CAS  PubMed  Google Scholar 

  8. Cripps RM, Olson EN (2002) Control of cardiac development by an evolutionarily conserved transcriptional network. Dev Biol 246:14–28

    CAS  PubMed  Google Scholar 

  9. Anderson RH, Webb S, Brown NA (1998) The mouse with trisomy 16 as a model of human hearts with common atrioventricular junction. Cardiovasc Res 39:155–164

    Article  CAS  PubMed  Google Scholar 

  10. Webb S, Brown NA, Anderson RH (1998) Formation of the atrioventricular septal structures in the normal mouse. Circ Res 82:645–656

    CAS  PubMed  Google Scholar 

  11. Pexieder T (1995) Conotruncus and its septation at the advent of the molecular biology era. In: Clark EB, Markwald RR, Takao A (eds) Developmental mechanisms of heart disease. Futura, Armonk, pp 227–247

  12. Hoff MJ van den, Moorman AF, Ruijter JM, et al (1999) Myocardialization of the cardiac outflow tract. Dev Biol 212:477–490

    Article  PubMed  Google Scholar 

  13. Wenink AC, Gittenberger-de Groot AC (1986) Embryology of the mitral valve. Int J Cardiol 11:75–84

    CAS  PubMed  Google Scholar 

  14. Runyan RB, Markwald RR (1983) Invasion of mesenchyme into three-dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue. Dev Biol 95:108–114

    CAS  PubMed  Google Scholar 

  15. Boyer AS, Ayerinskas, II, Vincent EB, McKinney LA, Weeks DL, Runyan RB (1999) TGFbeta2 and TGFbeta3 have separate and sequential activities during epithelial-mesenchymal cell transformation in the embryonic heart. Dev Biol 208:530–545

    Article  CAS  PubMed  Google Scholar 

  16. Yamagishi T, Nakajima Y, Miyazono K, Nakamura H (1999) Bone morphogenetic protein-2 acts synergistically with transforming growth factor-beta3 during endothelial-mesenchymal transformation in the developing chick heart. J Cell Physiol 180:35–45

    Article  CAS  PubMed  Google Scholar 

  17. Brown CB, Boyer AS, Runyan RB, Barnett JV (1996) Antibodies to the Type II TGFbeta receptor block cell activation and migration during atrioventricular cushion transformation in the heart. Dev Biol 174:248–257

    Article  CAS  PubMed  Google Scholar 

  18. Brown CB, Boyer AS, Runyan RB, Barnett JV (1999) Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science 283:2080–2082

    Article  CAS  PubMed  Google Scholar 

  19. Kaartinen V, Voncken JW, Shuler C, et al (1995) Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet 11:415–421

    CAS  PubMed  Google Scholar 

  20. Camenisch TD, Molin DG, Person A, et al (2002) Temporal and distinct TGFbeta ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev Biol 248:170–181

    Article  CAS  PubMed  Google Scholar 

  21. Markwald RR, Fitzharris TP, Bank H, Bernanke DH (1978) Structural analyses on the matrical organization of glycosaminoglycans in developing endocardial cushions. Dev Biol 62:292–316

    CAS  PubMed  Google Scholar 

  22. Nakamura A, Manasek FJ (1981) An experimental study of the relation of cardiac jelly to the shape of the early chick embryonic heart. J Embryol Exp Morphol 65:235–256

    CAS  PubMed  Google Scholar 

  23. Fraser JR, Laurent TC, Laurent UB (1997) Hyaluronan: its nature, distribution, functions and turnover. J Intern Med 242:27–33

    CAS  PubMed  Google Scholar 

  24. Hascall VC (2000) Hyaluronan, a common thread. Glycoconj J 17:607–616

    Article  CAS  PubMed  Google Scholar 

  25. Toole BP (1997) Hyaluronan in morphogenesis. J Intern Med 242:35–40

    CAS  PubMed  Google Scholar 

  26. Camenisch TD, Spicer AP, Brehm-Gibson T, et al (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360

    CAS  PubMed  Google Scholar 

  27. Baldwin HS, Lloyd TR, Solursh M (1994) Hyaluronate degradation affects ventricular function of the early postlooped embryonic rat heart in situ. Circ Res 74:244–252

    CAS  PubMed  Google Scholar 

  28. Mjaatvedt CH, Yamamura H, Capehart AA, Turner D, Markwald RR (1998) The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev Biol 202:56–66

    Article  CAS  PubMed  Google Scholar 

  29. Camenisch TD, Biesterfeldt J, Brehm-Gibson T, Bradley J, McDonald JA (2001) Regulation of cardiac cushion development by hyaluronan. Exp Clin Cardiol 6:4–10

    CAS  Google Scholar 

  30. Walsh EC, Stainier DY (2001) Udp-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293:1670–1673

    Article  CAS  PubMed  Google Scholar 

  31. Klewer SE, Krob SL, Kolker SJ, Kitten GT (1998) Expression of type VI collagen in the developing mouse heart. Dev Dyn 211:248–255

    Article  CAS  PubMed  Google Scholar 

  32. Rongish BJ, Drake CJ, Argraves WS, Little CD (1998) Identification of the developmental marker, JB3-antigen, as fibrillin-2 and its de novo organization into embryonic microfibrous arrays. Dev Dyn 212:461–471

    Article  CAS  PubMed  Google Scholar 

  33. Miosge N, Sasaki T, Chu ML, Herken R, Timpl R (1998) Ultrastructural localization of microfibrillar fibulin-1 and fibulin-2 during heart development indicates a switch in molecular associations. Cell Mol Life Sci 54:606–613

    Article  CAS  PubMed  Google Scholar 

  34. Tsuda T, Wang H, Timpl R, Chu ML (2001) Fibulin-2 expression marks transformed mesenchymal cells in developing cardiac valves, aortic arch vessels, and coronary vessels. Dev Dyn 222:89–100

    Article  CAS  PubMed  Google Scholar 

  35. Eisenberg LM, Markwald RR (1995) Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 77:1–6

    CAS  PubMed  Google Scholar 

  36. LeBaron RG, Zimmermann DR, Ruoslahti E (1992) Hyaluronate binding properties of versican. J Biol Chem 267:10003–10010

    CAS  PubMed  Google Scholar 

  37. Aspberg A, Adam S, Kostka G, Timpl R, Heinegard D (1999) Fibulin-1 is a ligand for the C-type lectin domains of aggrecan and versican. J Biol Chem 274:20444–20449

    Article  CAS  PubMed  Google Scholar 

  38. Binari RC, Staveley BE, Johnson WA, Godavarti R, Sasisekharan R, Manoukian AS (1997) Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124:2623–2632

    CAS  PubMed  Google Scholar 

  39. Fujise M, Takeo S, Kamimura K, et al (2003) Dally regulates Dpp morphogen gradient formation in the Drosophila wing. Development 130:1515–1522

    Article  CAS  PubMed  Google Scholar 

  40. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    CAS  PubMed  Google Scholar 

  41. Howe A, Aplin AE, Alahari SK, Juliano RL (1998) Integrin signaling and cell growth control. Curr Opin Cell Biol 10:220–231

    CAS  PubMed  Google Scholar 

  42. Guy PM, Platko JV, Cantley LC, Cerione RA, Carraway KL 3rd (1994) Insect cell-expressed p180erbB3 possesses an impaired tyrosine kinase activity. Proc Natl Acad Sci USA 91:8132–8136

    CAS  PubMed  Google Scholar 

  43. Schroeder JA, Lee DC (1997) Transgenic mice reveal roles for TGFalpha and EGF receptor in mammary gland development and neoplasia. J Mammary Gland Biol Neoplasia 2:119–129

    CAS  PubMed  Google Scholar 

  44. Falls DL (2003) Neuregulins: functions, forms, and signaling strategies. Exp Cell Res 284:14–30

    Article  CAS  PubMed  Google Scholar 

  45. Riese DJ 2nd, Komurasaki T, Plowman GD, Stern DF (1998) Activation of ErbB4 by the bifunctional epidermal growth factor family hormone epiregulin is regulated by ErbB2. J Biol Chem 273:11288–11294

    Article  CAS  PubMed  Google Scholar 

  46. Elenius K, Paul S, Allison G, Sun J, Klagsbrun M (1997) Activation of HER4 by heparin-binding EGF-like growth factor stimulates chemotaxis but not proliferation. EMBO J 16:1268–1278

    Article  CAS  PubMed  Google Scholar 

  47. Pinkas-Kramarski R, Soussan L, Waterman H, et al (1996) Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 15:2452–2467

    CAS  PubMed  Google Scholar 

  48. Garrett TP, McKern NM, Lou M, et al (2003) The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell 11:495–505

    CAS  PubMed  Google Scholar 

  49. Ferguson KM, Berger MB, Mendrola JM, Cho HS, Leahy DJ, Lemmon MA (2003) EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell 11:507–517

    CAS  PubMed  Google Scholar 

  50. Alroy I, Yarden Y (1997) The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett 410:83–86

    CAS  PubMed  Google Scholar 

  51. Carpenter G (2000) The EGF receptor: a nexus for trafficking and signaling. Bioessays 22:697–707

    Article  CAS  PubMed  Google Scholar 

  52. Olayioye MA, Graus-Porta D, Beerli RR, Rohrer J, Gay B, Hynes NE (1998) ErbB-1 and ErbB-2 acquire distinct signaling properties dependent upon their dimerization partner. Mol Cell Biol 18:5042–5051

    CAS  PubMed  Google Scholar 

  53. Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE (1999) ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem 274:17209–17218

    Article  CAS  PubMed  Google Scholar 

  54. Amundadottir LT, Leder P (1998) Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes. Oncogene 16:737–746

    Article  CAS  PubMed  Google Scholar 

  55. Daly JM, Olayioye MA, Wong AM, et al (1999) NDF/heregulin-induced cell cycle changes and apoptosis in breast tumour cells: role of PI3 kinase and p38 MAP kinase pathways. Oncogene 18:3440–3451

    Article  CAS  PubMed  Google Scholar 

  56. Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ, Der CJ (1998) Increasing complexity of Ras signaling. Oncogene 17:1395–1413

    CAS  PubMed  Google Scholar 

  57. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167

    CAS  PubMed  Google Scholar 

  58. Brockhoff G, Heiss P, Schlegel J, Hofstaedter F, Knuechel R (2001) Epidermal growth factor receptor, c-erbB2 and c-erbB3 receptor interaction, and related cell cycle kinetics of SK-BR-3 and BT474 breast carcinoma cells. Cytometry 44:338–348

    Article  CAS  PubMed  Google Scholar 

  59. Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 83:59–115

    CAS  PubMed  Google Scholar 

  60. Hertig CM, Kubalak SW, Wang Y, Chien KR (1999) Synergistic roles of neuregulin-1 and insulin-like growth factor-I in activation of the phosphatidylinositol 3-kinase pathway and cardiac chamber morphogenesis. J Biol Chem 274:37362–37369

    Article  CAS  PubMed  Google Scholar 

  61. Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378:386–390 (erratum 378:753)

    Google Scholar 

  62. Erickson SL, O'Shea KS, Ghaboosi N, et al (1997) ErbB3 is required for normal cerebellar and cardiac development: a comparison with ErbB2-and heregulin-deficient mice. Development 124:4999–5011

    CAS  PubMed  Google Scholar 

  63. Camenisch TD, Schroeder JA, Bradley J, Klewer SE, McDonald JA (2002) Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med 8:850–855

    CAS  PubMed  Google Scholar 

  64. Gassmann M, Casagranda F, Orioli D, et al (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378:390–394

    CAS  PubMed  Google Scholar 

  65. Chan R, Hardy WR, Laing MA, Hardy SE, Muller WJ (2002) The catalytic activity of the ErbB-2 receptor tyrosine kinase is essential for embryonic development. Mol Cell Biol 22:1073–1078

    Article  CAS  PubMed  Google Scholar 

  66. Nebigil CG, Maroteaux L (2001) A novel role for serotonin in heart. Trends Cardiovasc Med 11:329–335

    Article  CAS  PubMed  Google Scholar 

  67. Chen B, Bronson RT, Klaman LD, et al (2000) Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet 24:296–299

    Article  CAS  PubMed  Google Scholar 

  68. Iwamoto R, Yamazaki S, Asakura M, et al (2003) Heparin-binding EGF-like growth factor and ErbB signaling is essential for heart function. Proc Natl Acad Sci USA 100:3221–3226

    Article  CAS  PubMed  Google Scholar 

  69. Bourguignon LY, Zhu H, Chu A, Iida N, Zhang L, Hung MC (1997) Interaction between the adhesion receptor, CD44, and the oncogene product, p185HER2, promotes human ovarian tumor cell activation. J Biol Chem 272:27913–27918

    Article  CAS  PubMed  Google Scholar 

  70. Lakkis MM, Epstein JA (1998) Neurofibromin modulation of ras activity is required for normal endocardial-mesenchymal transformation in the developing heart. Development 125:4359–4367

    CAS  PubMed  Google Scholar 

  71. Lee H, Akita RW, Sliwkowski MX, Maihle NJ (2001) A naturally occurring secreted human ErbB3 receptor isoform inhibits heregulin-stimulated activation of ErbB2, ErbB3, and ErbB4. Cancer Res 61:4467–4473

    CAS  PubMed  Google Scholar 

  72. Peschon JJ, Slack JL, Reddy P, et al (1998) An essential role for ectodomain shedding in mammalian development. Science 282:1281–1284

    Article  CAS  PubMed  Google Scholar 

  73. Sunnarborg SW, Hinkle CL, Stevenson M, et al (2002) Tumor necrosis factor-alpha converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J Biol Chem 277:12838–12845

    Article  CAS  PubMed  Google Scholar 

  74. Gaussin V, Van de Putte T, Mishina Y, et al (2002) Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci USA 99:2878–2883

    Article  CAS  PubMed  Google Scholar 

  75. Hierck BP, Poelmann RE, van Iperen L, Brouwer A, Gittenberger-de Groot AC (1996) Differential expression of alpha-6 and other subunits of laminin binding integrins during development of the murine heart. Dev Dyn 206:100–111

    Article  CAS  PubMed  Google Scholar 

  76. Gottlieb PD, Pierce SA, Sims RJ, et al (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31:25–32

    CAS  PubMed  Google Scholar 

  77. Jones CM, Lyons KM, Hogan BL (1991) Involvement of bone morphogenetic protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111:531–542

    CAS  PubMed  Google Scholar 

  78. Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9:2105–2116

    CAS  PubMed  Google Scholar 

  79. Kim RY, Robertson EJ, Solloway MJ (2001) Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol 235:449–466

    Article  CAS  PubMed  Google Scholar 

  80. Zhu X, Lough J (1996) Expression of alternatively spliced and canonical basic fibroblast growth factor mRNAs in the early embryo and developing heart. Dev Dyn 206:139–145

    CAS  PubMed  Google Scholar 

  81. Runyan RB, Potts JD, Sharma RV, Loeber CP, Chiang JJ, Bhalla RC (1990) Signal transduction of a tissue interaction during embryonic heart development. Cell Regulation 1:301–313

    CAS  PubMed  Google Scholar 

  82. Pompa JL de la, Timmerman LA, Takimoto H, et al (1998) Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392:182–186

    Article  PubMed  Google Scholar 

  83. Kumai M, Nishii K, Nakamura K, Takeda N, Suzuki M, Shibata Y (2000) Loss of connexin45 causes a cushion defect in early cardiogenesis. Development 127:3501–3512

    CAS  PubMed  Google Scholar 

  84. Gaio U, Schweickert A, Fischer A, et al (1999) A role of the cryptic gene in the correct establishment of the left-right axis. Curr Biol 9:1339–1342

    Article  CAS  PubMed  Google Scholar 

  85. Crossin KL, Hoffman S (1991) Expression of adhesion molecules during the formation and differentiation of the avian endocardial cushion tissue. Dev Biol 145:277–286

    CAS  PubMed  Google Scholar 

  86. Yanagisawa H, Hammer RE, Richardson JA, et al (2000) Disruption of ECE-1 and ECE-2 reveals a role for endothelin-converting enzyme-2 in murine cardiac development. J Clin Invest 105:1373–1382

    CAS  PubMed  Google Scholar 

  87. Frank DU, Fotheringham LK, Brewer JA, et al (2002) An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129:4591–4603

    CAS  PubMed  Google Scholar 

  88. Obata K, Koide M, Nagata K, et al (2001) Role of FK506-binding protein 12 in development of the chick embryonic heart. Biochem Biophys Res Commun 283:613–620

    Article  CAS  PubMed  Google Scholar 

  89. Yazawa S, Obata K, Iio A, et al (2003) Heart-selective expression of the chicken FK506-binding protein (FKBP) 12.6 gene during embryonic development. Dev Dyn 226:33–41

    Article  CAS  PubMed  Google Scholar 

  90. Svensson EC, Huggins GS, Lin H, et al (2000) A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2. Nat Genet 25:353–356

    Article  CAS  PubMed  Google Scholar 

  91. Crispino JD, Lodish MB, Thurberg BL, et al (2001) Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15:839–844

    Article  CAS  PubMed  Google Scholar 

  92. Nemer G, Nemer M (2002) Cooperative interaction between GATA5 and NF-ATc regulates endothelial-endocardial differentiation of cardiogenic cells. Development 129:4045–4055

    CAS  PubMed  Google Scholar 

  93. Thery C, Stern CD (1996) Roles of kringle domain-containing serine proteases in epithelial-mesenchymal transitions during embryonic development. Acta Anat (Basel) 156:162–172

    Google Scholar 

  94. Evans SM, O'Brien TX (1993) Expression of the helix-loop-helix factor Id during mouse embryonic development. Dev Biol 159:485–499

    Article  CAS  PubMed  Google Scholar 

  95. Nakajima Y, Miyazono K, Kato M, Takase M, Yamagishi T, Nakamura H (1997) Extracellular fibrillar structure of latent TGF beta binding protein-1: role in TGF beta-dependent endothelial-mesenchymal transformation during endocardial cushion tissue formation in mouse embryonic heart. J Cell Biol 136:193–204

    Article  CAS  PubMed  Google Scholar 

  96. Kruzynska-Frejtag A, Machnicki M, Rogers R, Markwald RR, Conway SJ (2001) Periostin (an osteoblast-specific factor) is expressed within the embryonic mouse heart during valve formation. Mech Dev 103:183–188

    Article  CAS  PubMed  Google Scholar 

  97. Costell M, Carmona R, Gustafsson E, Gonzalez-Iriarte M, Fassler R, Munoz-Chapuli R (2002) Hyperplastic conotruncal endocardial cushions and transposition of great arteries in perlecan-null mice. Circ Res 91:158–164

    Article  CAS  PubMed  Google Scholar 

  98. Liu C, Liu W, Palie J, Lu MF, Brown NA, Martin JF (2002) Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions. Development 129:5081–5091

    Article  CAS  PubMed  Google Scholar 

  99. Lin CR, Kioussi C, O'Connell S, et al (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401:279–282

    Article  CAS  PubMed  Google Scholar 

  100. Enciso JM, Gratzinger D, Camenisch TD, Canosa S, Pinter E, Madri JA (2003) Elevated glucose inhibits VEGF-A-mediated endocardial cushion formation: modulation by PECAM-1 and MMP-2. J Cell Biol 160:605–615

    Article  CAS  PubMed  Google Scholar 

  101. Candia AF, Hu J, Crosby J, et al (1992) Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development 116:1123–1136

    CAS  PubMed  Google Scholar 

  102. Kwang SJ, Brugger SM, Lazik A, et al (2002) Msx2 is an immediate downstream effector of Pax3 in the development of the murine cardiac neural crest. Development 129:527–538

    CAS  PubMed  Google Scholar 

  103. Ranger AM, Grusby MJ, Hodge MR, et al (1998) The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392:186–190

    Article  CAS  PubMed  Google Scholar 

  104. Lee TC, Zhao YD, Courtman DW, Stewart DJ (2000) Abnormal aortic valve development in mice lacking endothelial nitric oxide synthase. Circulation 101:2345–2348

    CAS  PubMed  Google Scholar 

  105. Biben C, Harvey RP (1997) Homeodomain factor Nkx2–5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 11:1357–1369

    CAS  PubMed  Google Scholar 

  106. Robbins JR, McGuire PG, Wehrle-Haller B, Rogers SL (1999) Diminished matrix metalloproteinase 2 (MMP-2) in ectomesenchyme-derived tissues of the Patch mutant mouse: regulation of MMP-2 by PDGF and effects on mesenchymal cell migration. Dev Biol 212:255–263

    Article  CAS  PubMed  Google Scholar 

  107. Zhao Z, Rivkees SA (2003) Rho-associated kinases play an essential role in cardiac morphogenesis and cardiomyocyte proliferation. Dev Dyn 226:24–32

    Article  CAS  PubMed  Google Scholar 

  108. Bouman HG, Broekhuizen ML, Baasten AM, Gittenberger-de Groot AC, Wenink AC (1998) Diminished growth of atrioventricular cushion tissue in stage 24 retinoic acid-treated chicken embryos. Dev Dyn 213:50–58

    Article  CAS  PubMed  Google Scholar 

  109. Bouman HG, Broekhuizen LA, Baasten AM, Gittenberger-de Groot AC, Wenink AC (1997) Stereological study of stage 34 chicken hearts with looping disturbances after retinoic acid treatment: disturbed growth of myocardium and atrioventricular cushion tissue. Anat Rec 248:242–250

    Article  CAS  PubMed  Google Scholar 

  110. Gruber PJ, Kubalak SW, Pexieder T, Sucov HM, Evans RM, Chien KR (1996) RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice. J Clin Invest 98:1332–1343

    CAS  PubMed  Google Scholar 

  111. Sucov HM, Dyson E, Gumeringer CL, Price J, Chien KR, Evans RM (1994) RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8:1007–1018

    CAS  PubMed  Google Scholar 

  112. Sucov HM, Evans RM (1995) Retinoic acid and retinoic acid receptors in development. Mol Neurobiol 10:169–184

    CAS  PubMed  Google Scholar 

  113. Kastner P, Messaddeq N, Mark M, et al (1997) Vitamin A deficiency and mutations of RXRalpha, RXRbeta and RARalpha lead to early differentiation of embryonic ventricular cardiomyocytes. Development 124:4749–4758

    CAS  PubMed  Google Scholar 

  114. Kruithof BP, Van Den Hoff MJ, Wessels A, Moorman AF (2003) Cardiac muscle cell formation after development of the linear heart tube. Dev Dyn 227:1–13

    Article  PubMed  Google Scholar 

  115. Romano LA, Runyan RB (2000) Slug is an essential target of TGFbeta2 signaling in the developing chicken heart. Dev Biol 223:91–102

    Article  CAS  PubMed  Google Scholar 

  116. Romano LA, Runyan RB (1999) Slug is a mediator of epithelial-mesenchymal cell transformation in the developing chicken heart. Dev Biol 212:243–254

    Article  CAS  PubMed  Google Scholar 

  117. Galvin KM, Donovan MJ, Lynch CA, et al (2000) A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet 24:171–174

    Article  CAS  PubMed  Google Scholar 

  118. Ya J, Schilham MW, Deboer PAJ, Moorman AFM, Clevers H, Lamers WH (1998) Sox4-deficiency syndrome in mice Is an animal model For common trunk. Circ Res 83:986–994

    CAS  PubMed  Google Scholar 

  119. Nakajima Y, Mironov V, Yamagishi T, Nakamura H, Markwald RR (1997) Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3. Dev Dyn 209:296–309

    Article  CAS  PubMed  Google Scholar 

  120. Puri MC, Partanen J, Rossant J, Bernstein A (1999) Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126:4569–4580

    CAS  PubMed  Google Scholar 

  121. McGuire PG, Alexander SM (1993) Inhibition of urokinase synthesis and cell surface binding alters the motile behavior of embryonic endocardial-derived mesenchymal cells in vitro. Development 118:931–939

    CAS  PubMed  Google Scholar 

  122. Gorny KN, Brauer PR (1999) Urokinase regulates embryonic cardiac cushion cell migration without converting plasminogen. Anat Rec 256:269–278

    Article  CAS  PubMed  Google Scholar 

  123. Dor Y, Camenisch TD, Itin A, et al (2001) A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart disease. Development 128:1531–1538

    CAS  PubMed  Google Scholar 

  124. Dor Y, Klewer SE, McDonald JA, Keshet E, Camenisch TD (2003) VEGF modulates early heart valve formation. Anat Rec 271A:202–208

    Article  CAS  PubMed  Google Scholar 

  125. Meier T, Masciulli F, Moore C, et al (1998) Agrin can mediate acetylcholine receptor gene expression in muscle by aggregation of muscle-derived neuregulins. J Cell Biol 141:715–726

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the sharing of unpublished observations by the indicated investigators. We thank Dr. S. Klewer for the type VI collagen images and T. Biazo for graphics support. We thank Drs. J. McDonald and R. Runyan for support. T.D.C. is supported by the American Heart Association and the PANDA Foundation of Arizona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd D. Camenisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, J.A., Jackson, L.F., Lee, D.C. et al. Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J Mol Med 81, 392–403 (2003). https://doi.org/10.1007/s00109-003-0456-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0456-5

Keywords

Navigation