Skip to main content
Log in

Einfluss cochleärer Parameter auf die aktuelle Cochleaimplantatversorgung

Entwicklung eines Konzepts für die personalisierte Medizin

Influence of cochlear parameters on the current practice in cochlear implantation

Development of a concept for personalized medicine. German version

  • Übersichten
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Seit dem Einzug von Cochleaimplantaten in die klinische Routine ist das Interesse an der Messung der cochleären Parameter, insbesondere der cochleären Länge (Länge des Canalis spiralis cochleae, „cochlear duct length“, CDL), immer größer geworden, da diese einen Einfluss auf die korrekte Auswahl der Elektrode haben können. Einerseits ist die Abdeckung eines optimalen Frequenzbands für ein gutes audiologisches Ergebnis relevant, andererseits gilt es, ein cochleäres Trauma durch eine zu tiefe Insertion oder Fehllage des Elektrodenträgers zu vermeiden. Cochleaimplantate stimulieren die Spiralganglienzellen (SGZ), deren Anzahl und insbesondere Verteilung auch einen Einfluss auf die Funktion eines Cochleaimplantats haben. Darüber hinaus kann die Frequenzzuordnung jedes Elektrodenkontakts für den postoperativen Erfolg eine entscheidende Rolle einnehmen, da die Frequenzverteilung der menschlichen Cochlea mit variierender CDL substanzielle interindividuelle Unterschiede aufweist. Ziel der vorliegenden Arbeit ist es, einen Überblick über verwendete Methoden zur Bestimmung der cochleären Parameter und über relevante Studien zur CDL, zur Anzahl und Verteilung der SGZ und zur Frequenzzuordnung der Elektrodenkontakte zu geben. Aufbauend darauf wird ein Konzept zur personalisierten Cochleaimplantatversorgung vorgestellt. Zusammenfassend soll die vorliegende Arbeit dabei helfen, die personalisierte Medizin im Bereich der Cochleaimplantatversorgung zukünftig zu fördern, um aktuelle Grenzen zu überwinden und das audiologische Ergebnis zu optimieren.

Abstract

Since the introduction of cochlear implants into clinical routine, the interest in measuring cochlear parameters, particularly the cochlear duct length (CDL) has increased, since these can have an influence on the correct selection of the electrode. On the one hand, coverage of an optimal frequency band is relevant for a good audiological result, and on the other hand, cochlear trauma due to too deep insertion or displacement of the electrode must be avoided. Cochlear implants stimulate the spiral ganglion cells (SGC). The number of SGC and particularly their distribution can also have an influence on the function of a cochlear implant. In addition, the frequency assignment of each electrode contact can play a decisive role in the postoperative success, since the frequency distribution of the human cochlea with varying CDL shows substantial interindividual differences. The aim of this work is to provide an overview of the methods used to determine the cochlear parameters as well as of relevant studies on the CDL, the number and distribution of SGZ, and the frequency assignment of electrode contacts. Based on this, a concept for individualized cochlear implantation will be presented. In summary, this work should help to promote individualized medicine in the field of cochlear implants in the future, in order to overcome current limitations and optimize audiological outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Alexiades G, Dhanasingh A, Jolly C (2015) Method to estimate the complete and two-turn cochlear duct length. Otol Neurotol 36:904–907

    Article  Google Scholar 

  2. Atturo F, Barbara M, Rask-Andersen H (2014) On the anatomy of the ‘hook’ region of the human cochlea and how it relates to cochlear implantation. Audiol Neurootol 19:378–385

    Article  Google Scholar 

  3. Baskent D, Shannon RV (2005) Interactions between cochlear implant electrode insertion depth and frequency-place mapping. J Acoust Soc Am 117:1405–1416

    Article  Google Scholar 

  4. Baumann U, Nobbe A (2006) The cochlear implant electrode-pitch function. Hear Res 213:34–42

    Article  Google Scholar 

  5. Danielian A, Ishiyama G, Lopez IA et al (2020) Morphometric linear and angular measurements of the human cochlea in implant patients using 3‑dimensional reconstruction. Hear Res 386:107874

    Article  Google Scholar 

  6. Dhanasingh A (2019) Cochlear duct length along the outer wall vs organ of corti: Which one is relevant for the electrode array length selection and frequency mapping using Greenwood function? World J Otorhinolaryngol Head Neck Surg 5:117–121

    Article  Google Scholar 

  7. Dhanasingh A, Jolly CN, Rajan G et al (2020) Literature review on the distribution of spiral ganglion cell bodies inside the human cochlear central modiolar trunk. J Int Adv Otol 16:104–110

    Article  Google Scholar 

  8. Escude B, James C, Deguine O et al (2006) The size of the cochlea and predictions of insertion depth angles for cochlear implant electrodes. Audiol Neurootol 11(Suppl 1):27–33

    Article  Google Scholar 

  9. Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356

    Article  Google Scholar 

  10. Guild SR (1921) A graphic reconstruction method for the study of the organ of Corti. Anat Rec 22:140–157

    Article  Google Scholar 

  11. Hardy M (1938) The length of the organ of Corti in man. Am J Anat 62:291–311

    Article  Google Scholar 

  12. Helpard L, Li H, Rask-Andersen H et al (2020) Characterization of the human helicotrema: implications for cochlear duct length and frequency mapping. J Otolaryngol Neck Surg 49:2

    Article  Google Scholar 

  13. Jiam NT, Gilbert M, Cooke D et al (2019) Association between flat-panel computed tomographic imaging-guided place-pitch mapping and speech and pitch perception in cochlear implant users. JAMA Otolaryngol Head Neck Surg 145:109–116

    Article  Google Scholar 

  14. Johnston JD, Scoffings D, Chung M et al (2016) Computed tomography estimation of cochlear duct length can predict full insertion in cochlear implantation. Otol Neurotol 37:223–228

    Article  Google Scholar 

  15. Kawano A, Seldon HL, Clark GM (1996) Computer-aided three-dimensional reconstruction in human cochlear maps: measurement of the lengths of organ of Corti, outer wall, inner wall, and Rosenthal’s canal. Ann Otol Rhinol Laryngol 105:701–709

    Article  CAS  Google Scholar 

  16. Ketten DR, Skinner MW, Wang G et al (1998) In vivo measures of cochlear length and insertion depth of nucleus cochlear implant electrode arrays. Ann Otol Rhinol Laryngol Suppl 175:1–16

    CAS  PubMed  Google Scholar 

  17. Koch RW, Elfarnawany M, Zhu N et al (2017) Evaluation of cochlear duct length computations using synchrotron radiation phase-contrast imaging. Otol Neurotol 38:e92–e99

    Article  Google Scholar 

  18. Li H, Schart-Moren N, Rohani SA et al (2020) Synchrotron radiation-based reconstruction of the human spiral ganglion: implications for cochlear implantation. Ear Hear 41:173–181

    Article  Google Scholar 

  19. Meng J, Li S, Zhang F et al (2016) Cochlear size and shape variability and implications in cochlear implantation surgery. Otol Neurotol 37:1307–1313

    Article  Google Scholar 

  20. Noble JH, Labadie RF, Gifford RH et al (2013) Image-guidance enables new methods for customizing cochlear implant stimulation strategies. IEEE Trans Neural Syst Rehabil Eng 21:820–829

    Article  Google Scholar 

  21. Otte J, Schunknecht HF, Kerr AG (1978) Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. Laryngoscope 88:1231–1246

    Article  CAS  Google Scholar 

  22. Pietsch M, Aguirre Davila L, Erfurt P et al (2017) Spiral form of the human cochlea results from spatial constraints. Sci Rep 7:7500

    Article  CAS  Google Scholar 

  23. Schatzer R, Vermeire K, Visser D et al (2014) Electric-acoustic pitch comparisons in single-sided-deaf cochlear implant users: frequency-place functions and rate pitch. Hear Res 309:26–35

    Article  Google Scholar 

  24. Schendzielorz P, Ilgen L, Neun T et al (2020) Precise evaluation of the cochlear duct length by flat-panel volume computed tomography (fpVCT)—implication of secondary reconstructions. Otol Neurotol. Im Druck

  25. Schurzig D, Timm ME, Batsoulis C et al (2018) Analysis of different approaches for clinical cochlear coverage evaluation after cochlear implantation. Otol Neurotol 39:e642–e650

    Article  Google Scholar 

  26. Schurzig D, Timm ME, Batsoulis C et al (2018) A novel method for clinical cochlear duct length estimation toward patient-specific cochlear implant selection. OTO Open. https://doi.org/10.1177/2473974X18800238

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schurzig D, Timm ME, Lexow GJ et al (2018) Cochlear helix and duct length identification—evaluation of different curve fitting techniques. Cochlear Implants Int 19:268–283

    Article  Google Scholar 

  28. Stakhovskaya O, Sridhar D, Bonham BH et al (2007) Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J Assoc Res Otolaryngol 8:220–233

    Article  Google Scholar 

  29. Takagi A, Sando I (1989) Computer-aided three-dimensional reconstruction: a method of measuring temporal bone structures including the length of the cochlea. Ann Otol Rhinol Laryngol 98:515–522

    Article  CAS  Google Scholar 

  30. Würfel W, Lanfermann H, Lenarz T et al (2014) Cochlear length determination using cone beam computed tomography in a clinical setting. Hear Res 316:65–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Rak.

Ethics declarations

Interessenkonflikt

K. Rak, L. Ilgen, J. Taeger, P. Schendzielorz, J. Voelker, S. Kaulitz, F.-T. Müller-Graff, A. Kurz, T. Neun und R. Hagen geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rak, K., Ilgen, L., Taeger, J. et al. Einfluss cochleärer Parameter auf die aktuelle Cochleaimplantatversorgung. HNO 69, 943–951 (2021). https://doi.org/10.1007/s00106-020-00968-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-020-00968-0

Schlüsselwörter

Keywords

Navigation