Skip to main content
Log in

Tumorbiologie des Oropharynxkarzinoms

Tumor biology of oropharyngeal carcinoma

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Oropharynxkarzinome (OPSCC) unterscheiden sich abhängig von noxenbasierter oder durch humane Papillomaviren (HPV) getriebener Ätiologie in klinischen Faktoren und der Prognose. Zugrunde liegend sind molekulare Unterschiede der Tumorbiologie.

Ziel der Arbeit

Ziel war die Darstellung wichtiger molekularbiologischer Charakteristika der Genetik, Epigenetik und Immunologie von OPSCC.

Material und Methoden

Es handelt sich um eine Übersichtsarbeit zu einer Auswahl molekularbiologischer Faktoren der Tumorbiologie von OPSCC aus Genetik, Epigenetik und Immunologie.

Ergebnisse

Genetische Veränderungen und deren Auswirkungen auf Kanzerogenese und Tumorbiologie werden in zunehmender Tiefe verstanden. Epigenetische Phänomene ergänzen funktionelle Zusammenhänge. Die epigenetischen Regulationsmechanismen der Gene sind komplex. Daher besteht in diesem Feld weiterhin großer Forschungsbedarf. Immunologische Aspekte der Molekularbiologie gewinnen im Kontext der aktuellen Entwicklungen in der Immunonkologie an Bedeutung.

Schlussfolgerung

Die Tumorbiologie von Oropharynxkarzinomen unterscheidet sich v. a. bezüglich des HPV-Status. Zusätzlich werden HPV-unabhängige Subgruppen genetisch, epigenetisch und immunologisch zunehmend charakterisiert. Aus diesen Erkenntnissen können logische Grundprinzipien neuer Therapiekonzepte abgeleitet werden.

Abstract

Background

Etiologically, oropharyngeal squamous cell carcinoma (OPSCC) can be divided into OPSCC caused by noxious agents and human papillomavirus (HPV)-driven carcinoma. These types differ with regard to clinical features and prognosis—differences which are rooted in the underlying molecular biology of the tumor.

Objective

The aim of this work is to provide an overview of the molecular biological characteristics of the genetics, epigenetics, and immunology of OPSCC.

Materials and methods

A literature review was performed on a selection of genetic, epigenetic, and immunological factors characterizing OPSCC.

Results

The understanding of genetic aberrations and their consequences for cancerogenesis and tumor biology is increasing. Epigenetic phenomena are complementing functional relationships. However, epigenetic mechanisms of gene regulation are complex and much research is still required in this field. Immunological aspects of cancer molecular biology have moved into the focus in light of recent advances in the field of immunotherapy.

Conclusion

The tumor biology of OPSCC is primarily defined by its HPV status. Additionally, HPV-independent genetic, epigenetic, and immunological signatures are being defined. From these advances, rationales for new treatment concepts may evolve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Tcga-Network (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517:576–582

    Google Scholar 

  2. Amin MB, Greene FL, Edge SB et al (2017) The eighth edition AJCC cancer staging manual: continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. Cancer J Clin 67:93–99

    Google Scholar 

  3. Ang KK, Harris J, Wheeler R et al (2010) Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363:24–35

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Balermpas P, Michel Y, Wagenblast J et al (2014) Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. Br J Cancer 110:501–509

    CAS  PubMed  Google Scholar 

  5. Balermpas P, Rodel F, Rodel C et al (2015) CD8+ tumour-infiltrating lymphocytes in relation to HPV status and clinical outcome in patients with head and neck cancer after postoperative chemoradiotherapy: A multicentre study of the German cancer consortium radiation oncology group (DKTK-ROG). Int J Cancer. https://doi.org/10.1002/ijc.29683

    Article  PubMed  Google Scholar 

  6. Balermpas P, Rodel F, Weiss C et al (2014) Tumor-infiltrating lymphocytes favor the response to chemoradiotherapy of head and neck cancer. OncoImmunology 3:e27403

    PubMed  PubMed Central  Google Scholar 

  7. Balz V, Scheckenbach K, Gotte K et al (2003) Is the p53 inactivation frequency in squamous cell carcinomas of the head and neck underestimated? Analysis of p53 exons 2–11 and human papillomavirus 16/18 E6 transcripts in 123 unselected tumor specimens. Cancer Res 63:1188–1191

    CAS  PubMed  Google Scholar 

  8. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bell RE, Golan T, Sheinboim D et al (2016) Enhancer methylation dynamics contribute to cancer plasticity and patient mortality. Genome Res 26:601–611

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17:719–732

    CAS  PubMed  Google Scholar 

  11. Broglie MA, Jochum W, Michel A et al (2017) Evaluation of type-specific antibodies to high risk-human papillomavirus (HPV) proteins in patients with oropharyngeal cancer. Oral Oncol 70:43–50

    CAS  PubMed  Google Scholar 

  12. Bui N, Huang JK, Bojorquez-Gomez A et al (2018) Disruption of NSD1 in head and neck cancer promotes favorable chemotherapeutic responses linked to hypomethylation. Mol Cancer Ther 17:1585–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Burns MB, Temiz NA, Harris RS (2013) Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat Genet 45:977–983

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chakravarthy A, Henderson S, Thirdborough SM et al (2016) Human Papillomavirus drives tumor development throughout the head and neck: improved prognosis is associated with an immune response largely restricted to the Oropharynx. J Clin Oncol 34:4132–4141

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen WS, Bindra RS, Mo A et al (2018) CDKN2A copy number loss is an independent prognostic factor in HPV-negative head and neck squamous cell carcinoma. Front Oncol 8:95

    PubMed  PubMed Central  Google Scholar 

  16. Cohen EEW, Soulieres D, Le Tourneau C et al (2019) Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet 393:156–167

    CAS  PubMed  Google Scholar 

  17. De Vos L, Grunwald I, Bawden EG et al (2020) The landscape of CD28, CD80, CD86, CTLA4, and ICOS DNA methylation in head and neck squamous cell carcinomas. Epigenetics. https://doi.org/10.1080/15592294.2020.175467

    Article  PubMed  PubMed Central  Google Scholar 

  18. Deleo AB, Jay G, Appella E et al (1979) Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. Proc Natl Acad Sci USA 76:2420–2424

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubot C, Bernard V, Sablin MP et al (2018) Comprehensive genomic profiling of head and neck squamous cell carcinoma reveals FGFR1 amplifications and tumour genomic alterations burden as prognostic biomarkers of survival. Eur J Cancer 91:47–55

    CAS  PubMed  Google Scholar 

  20. Faden DL, Ding F, Lin Y et al (2019) APOBEC mutagenesis is tightly linked to the immune landscape and immunotherapy biomarkers in head and neck squamous cell carcinoma. Oral Oncol 96:140–147

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ferris RL, Blumenschein G Jr., Fayette J et al (2018) Nivolumab vs investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2‑year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol 81:45–51

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferris RL, Blumenschein GJ, Fayette J et al (2016) Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 375:1856–1867

    PubMed  PubMed Central  Google Scholar 

  23. Gangkofner DS, Holzinger D, Schroeder L et al (2019) Patterns of antibody responses to non-viral cancer antigens in head and neck squamous cell carcinoma patients differ by human papillomavirus status. Int J Cancer. https://doi.org/10.1002/ijc.32623

    Article  PubMed  Google Scholar 

  24. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:1

    Google Scholar 

  25. Garcia-Escudero R, Segrelles C, Duenas M et al (2018) Overexpression of PIK3CA in head and neck squamous cell carcinoma is associated with poor outcome and activation of the YAP pathway. Oral Oncol 79:55–63

    CAS  PubMed  Google Scholar 

  26. Gillison ML, Koch WM, Capone RB et al (2000) Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. JNCI J Natl Cancer Inst 92:709–720

    CAS  PubMed  Google Scholar 

  27. Greenberg MVC, Bourc’his D (2019) The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol 20:590–607

    CAS  PubMed  Google Scholar 

  28. Hanken H, Grobe A, Cachovan G et al (2014) CCND1 amplification and cyclin D1 immunohistochemical expression in head and neck squamous cell carcinomas. Clin Oral Investig 18:269–276

    PubMed  Google Scholar 

  29. Heusinkveld M, Goedemans R, Briet RJ et al (2011) Systemic and local human papillomavirus 16-specific T‑cell immunity in patients with head and neck cancer. Int J Cancer. https://doi.org/10.1002/ijc.26497

    Article  PubMed  Google Scholar 

  30. Hladikova K, Koucky V, Boucek J et al (2019) Tumor-infiltrating B cells affect the progression of oropharyngeal squamous cell carcinoma via cell-to-cell interactions with CD8(+) T cells. J Immunother Cancer 7:261

    PubMed  PubMed Central  Google Scholar 

  31. Hoffmann TK, Arsov C, Schirlau K et al (2006) T cells specific for HPV16 E7 epitopes in patients with squamous cell carcinoma of the oropharynx. International journal of cancer. J Int Cancer 118:1984–1991

    CAS  Google Scholar 

  32. Hoffmann TK, Sonkoly E, Hauser U et al (2008) Alterations in the p53 pathway and their association with radio- and chemosensitivity in head and neck squamous cell carcinoma. Oral Oncol 44:1100–1109

    CAS  PubMed  Google Scholar 

  33. Holzinger D, Schmitt M, Dyckhoff G et al (2012) Viral RNA patterns and high viral load reliably define oropharynx carcinomas with active HPV16 involvement. Cancer Res 72:4993–5003

    CAS  PubMed  Google Scholar 

  34. Jiang X, Finucane HK, Schumacher FR et al (2019) Shared heritability and functional enrichment across six solid cancers. Nat Commun 10:431

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Jung K, Kang H, Mehra R (2018) Targeting phosphoinositide 3‑kinase (PI3K) in head and neck squamous cell carcinoma (HNSCC). Cancer Head Neck 3:3

    Google Scholar 

  36. Keck MK, Zuo Z, Khattri A et al (2015) Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-14-2481

    Article  Google Scholar 

  37. Kelsey KT, Nelson HH, Kim S et al (2015) Human papillomavirus serology and tobacco smoking in a community control group. BMC Infect Dis 15:8

    PubMed  PubMed Central  Google Scholar 

  38. Klussmann JP, Weissenborn SJ, Wieland U et al (2001) Prevalence, distribution, and viral load of human papillomavirus 16 DNA in tonsillar carcinomas. Cancer 92:2875–2884

    CAS  PubMed  Google Scholar 

  39. Kofler B, Laban S, Busch CJ et al (2013) New treatment strategies for HPV-positive head and neck cancer. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-013-2603-0

    Article  PubMed  Google Scholar 

  40. Kostareli E, Hielscher T, Zucknick M et al (2016) Gene promoter methylation signature predicts survival of head and neck squamous cell carcinoma patients. Epigenetics 11:61–73

    PubMed  PubMed Central  Google Scholar 

  41. Kostareli E, Holzinger D, Bogatyrova O et al (2013) HPV-related methylation signature predicts survival in oropharyngeal squamous cell carcinomas. J Clin Invest 123:2488–2501

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Laban S, Gangkofner DS, Holzinger D et al (2019) Antibody responses to cancer antigens identify patients with a poor prognosis among HPV-positive and HPV-negative head and neck squamous cell carcinoma patients. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-19-1490

    Article  Google Scholar 

  43. Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    CAS  PubMed  Google Scholar 

  44. Kuhs LKA, Kreimer AR, Trivedi S et al (2017) Human papillomavirus 16 E6 antibodies are sensitive for human papillomavirus-driven oropharyngeal cancer and are associated with recurrence. Cancer 123:4382–4390

    Google Scholar 

  45. Lechner A, Schlosser HA, Thelen M et al (2019) Tumor-associated B cells and humoral immune response in head and neck squamous cell carcinoma. Oncoimmunology 8:1535293

    PubMed  PubMed Central  Google Scholar 

  46. Lechner M, Chakravarthy AR, Walter V et al (2018) Frequent HPV-independent p16/INK4A overexpression in head and neck cancer. Oral Oncol 83:32–37

    CAS  PubMed  Google Scholar 

  47. Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11:9–22

    CAS  PubMed  Google Scholar 

  48. Licitra L, Perrone F, Bossi P et al (2006) High-risk human papillomavirus affects prognosis in patients with surgically treated oropharyngeal squamous cell carcinoma. J Clin Oncol 24:5630–5636

    CAS  PubMed  Google Scholar 

  49. Linzer DI, Levine AJ (1979) Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    CAS  PubMed  Google Scholar 

  50. Lleras RA, Smith RV, Adrien LR et al (2013) Unique DNA methylation loci distinguish anatomic site and HPV status in head and neck squamous cell carcinoma. Clin Cancer Res 19:5444–5455

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Massarelli E, William W, Johnson F et al (2019) Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human Papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol 5:67–73

    PubMed  Google Scholar 

  52. Messerschmidt C, Obermayer B, Klinghammer K et al (2020) Distinct immune evasion in APOBEC-enriched, HPV-negative HNSCC. Int J Cancer. https://doi.org/10.1002/ijc.33123

    Article  PubMed  Google Scholar 

  53. Miao D, Margolis CA, Vokes NI et al (2018) Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat Genet 50:1271–1281

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nordfors C, Grun N, Tertipis N et al (2013) CD8+ and CD4+ tumour infiltrating lymphocytes in relation to human papillomavirus status and clinical outcome in tonsillar and base of tongue squamous cell carcinoma. Eur J Cancer 49:2522–2530

    CAS  PubMed  Google Scholar 

  55. Papillon-Cavanagh S, Lu C, Gayden T et al (2017) Impaired H3K36 methylation defines a subset of head and neck squamous cell carcinomas. Nat Genet 49:180–185

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Posner MR, Lorch JH, Goloubeva O et al (2010) Oropharynx cancer (OPC) in TAX 324: Human papillomavirus (HPV) and survival. J Clin Oncol 28:5525

    Google Scholar 

  57. Qiu W, Schonleben F, Li X et al (2006) PIK3CA mutations in head and neck squamous cell carcinoma. Clin Cancer Res 12:1441–1446

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Scheffner M, Werness BA, Huibregtse JM et al (1990) The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136

    CAS  PubMed  Google Scholar 

  59. Schneider K, Marbaix E, Bouzin C et al (2018) Immune cell infiltration in head and neck squamous cell carcinoma and patient outcome: a retrospective study. Acta Oncol 57:1165–1172

    PubMed  Google Scholar 

  60. Schoenfeld JD, Gjini E, Rodig SJ et al (2018) Evaluating the PD‑1 axis and immune effector cell infiltration in oropharyngeal squamous cell carcinoma. Int J Radiat Oncol Biol Phys 102:137–145

    CAS  PubMed  Google Scholar 

  61. Schroeder L, Wichmann G, Willner M et al (2018) Antibodies against human papillomaviruses as diagnostic and prognostic biomarker in patients with neck squamous cell carcinoma from unknown primary tumor. Int J Cancer 142:1361–1368

    CAS  PubMed  Google Scholar 

  62. Seiwert TY, Zuo Z, Keck MK et al (2015) Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res 21:632–641

    CAS  PubMed  Google Scholar 

  63. Syrjanen K, Syrjanen S, Lamberg M et al (1983) Morphological and immunohistochemical evidence suggesting human papillomavirus (HPV) involvement in oral squamous cell carcinogenesis. Int J Oral Surg 12:418–424

    CAS  PubMed  Google Scholar 

  64. Tada H, Takahashi H, Kuwabara-Yokobori Y et al (2020) Molecular profiling of circulating tumor cells predicts clinical outcome in head and neck squamous cell carcinoma. Oral Oncol 102:104558

    CAS  PubMed  Google Scholar 

  65. Wagner S, Wittekindt C, Reuschenbach M et al (2016) CD56-positive lymphocyte infiltration in relation to human papillomavirus association and prognostic significance in oropharyngeal squamous cell carcinoma. Int J Cancer 138:2263–2273

    CAS  PubMed  Google Scholar 

  66. Wagner S, Wittekindt C, Sharma SJ et al (2017) Human papillomavirus association is the most important predictor for surgically treated patients with oropharyngeal cancer. Br J Cancer 116:1604–1611

    PubMed  PubMed Central  Google Scholar 

  67. Wansom D, Light E, Thomas D et al (2012) Infiltrating lymphocytes and human papillomavirus-16—associated oropharyngeal cancer. Laryngoscope 122:121–127

    PubMed  PubMed Central  Google Scholar 

  68. Ward MJ, Thirdborough SM, Mellows T et al (2014) Tumour-infiltrating lymphocytes predict for outcome in HPV-positive oropharyngeal cancer. Br J Cancer 110:489–500

    CAS  PubMed  Google Scholar 

  69. Welters MJP, Ma W, Santegoets S et al (2018) Intratumoral HPV16-specific T cells constitute a type I‑oriented tumor microenvironment to improve survival in HPV16-driven oropharyngeal cancer. Clin Cancer Res 24:634–647

    CAS  PubMed  Google Scholar 

  70. Wood O, Clarke J, Woo J et al (2017) Head and neck squamous cell carcinomas are characterized by a stable immune signature within the primary tumor over time and space. Clin Cancer Res 23:7641–7649

    CAS  PubMed  Google Scholar 

  71. Wood O, Woo J, Seumois G et al (2016) Gene expression analysis of TIL rich HPV-driven head and neck tumors reveals a distinct B‑cell signature when compared to HPV independent tumors. Oncotarget 7:56781–56797

    PubMed  PubMed Central  Google Scholar 

  72. Wurdemann N, Wagner S, Sharma SJ et al (2017) Prognostic impact of AJCC/UICC 8th edition new staging rules in oropharyngeal squamous cell carcinoma. Front Oncol 7:129

    PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Die Abbildungen wurden mit AVAtar (https://github.com/sysbio-bioinf/avatar) erstellt. Für Abb. 1 wurden Daten des The Cancer Genome Atlas von cBioPortal [24, 24] importiert und mittels AVAtar visualisiert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Laban.

Ethics declarations

Interessenkonflikt

S. Laban: Advisory Boards: Astra Zeneca (AZ), Merck Sharp & Dohme (MSD). Vortragshonorare: Bristol Myers Squibb (BMS), Merck Serono, MSD. J. Doescher: Advisory Boards: Merck Serono, MSD. Vortragshonorare: Merck Serono. T. K. Hoffmann: Advisory Boards: BMS, MSD. Vortragshonorare: BMS, Merck Serono, MSD. M. Brand, C. Brunner, J. Ezić, G. Völkel, und H.A. Kestler geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laban, S., Brand, M., Ezić, J. et al. Tumorbiologie des Oropharynxkarzinoms. HNO 69, 249–255 (2021). https://doi.org/10.1007/s00106-020-00964-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-020-00964-4

Schlüsselwörter

Keywords

Navigation