Skip to main content
Log in

Molekularbiologische Aspekte der Neuroplastizität

Ansätze für die Therapie bei Tinnitus und Hörstörungen

Molecular biological aspects of neuroplasticity

Approaches for treating tinnitus and hearing disorders

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Neuronale Plastizität ist die Fähigkeit des Gehirns, seine Struktur und Organisation veränderten biologischen Anforderungen anzupassen. Kortikale Plastizität heißt, dass sich Größe, Konnektivität oder Aktivierungsmuster kortikaler Netzwerke aktivitätsabhängig ändern. Synaptische Plastizität bedeutet, dass sich die Stärke der synaptischen Übertragung aktivitätsabhängig ändert. Die zunehmende Stimulation afferenter Fasern führt zu lang anhaltenden Veränderungen der synaptischen Übertragung im Sinne einer Langzeitpotenzierung („long-term potentiation“, LTP), die verringerte Stimulation zur Langzeitdepression („long-term depression“, LTD). Letztendlich führen Schäden der Haarzellen, des Hörnervs und Exzitotoxizität zur Dysbalance zwischen LTP und LTD und damit zur Änderung der synaptischen Plastizität. Die Dysbalance zwischen LTP und LTD führt zur Veränderung der Genexpression und somit der Neurotransmission, der Rezeptoren, Ionenkanäle, regulatorischen Enzyme sowie zu direkten Veränderungen der Synapsen. Dies verursacht eine Zunahme der Erregung auf zellulärer Ebene. In der Folge kann die Dysbalance zu einer Hyperaktivität im dorsalen cochleären Nukleus, im Colliculus inferior sowie im auditorischen Kortex und im weiteren Verlauf über die Veränderung der kortikalen Plastizität zu Tinnitus führen.

Abstract

Peripheral and central structures are involved in the onset of tinnitus. Neuronal plasticity is of special importance for the occurrence of central tinnitus and its persistent form. Neuronal plasticity is the ability of the brain to adapt its own structure (synapses, nerve cells, or even whole areas of the brain) and its organization to modified biological requirements. Neuroplasticity is an ongoing dynamic process. Generally speaking, there are two types of plasticity: synaptic and cortical. Cortical plasticity involves activity-dependent changes in size, connectivity, or in the activation pattern of cortical networks. Synaptic plasticity refers to the activity-dependent change in the strength of synaptic transmission and can affect both the morphology and physiology of the synapse. The stimulation of afferent fibers leads to long-lasting changes in synaptic transmission. This phenomenon is called long-term potentiation (LTP) or long-term depression (LTD). From the perspective of molecular biology, synaptic plasticity is of particular importance for the development of tinnitus and its persistence. Ultimately, the damage to the hair cells, auditory nerve, and excitotoxicity results in an imbalance between LTP and LTD and thus in changes of synaptic plasticity. After excessive acoustic stimulation, LTP can be induced by the increase of afferent inputs, whereas decreased afferent inputs generate LTD. The imbalance between LTP and LTD leads to changes in gene expression and involves changes in neurotransmission, in the expression of the receptors, ion channels, regulatory enzymes, and in direct changes on the synapses. This causes an increase of activity on the cellular level. As a result, the imbalance can lead to hyperactivity in the dorsal cochlear nucleus, inferior colliculus, and in the auditory cortex and, later on, to changes in cortical plasticity leading to tinnitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Abbott SD, Hughes LF, Bauer CA et al (1999) Detection of glutamate decarboxylase isoforms in rat inferior colliculus following acoustic exposure. Neuroscience 93:1375–1381

    Article  PubMed  CAS  Google Scholar 

  2. Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569

    Article  PubMed  CAS  Google Scholar 

  3. Auerbach JM, Segal M (1997) Peroxide modulation of slow onset potentiation in rat hippocampus. J Neurosci 17:8695–8701

    PubMed  CAS  Google Scholar 

  4. Bartels H, Staal MJ, Albers FW (2007) Tinnitus and neural plasticity of the brain. Otol Neurotol 28:178–184

    Article  PubMed  Google Scholar 

  5. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  6. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125

    Article  PubMed  CAS  Google Scholar 

  7. Braus DF (2004) Neurobiologie des Lernens – Grundlage eines Veränderungsprozesses. Psychiatr Prax 31(Suppl 2):S215–S223

    Article  PubMed  Google Scholar 

  8. Bruel-Jungerman E, Davis S, Laroche S (2007) Brain plasticity mechanisms and memory: a party of four. Neuroscientist 13:492–505

    Article  PubMed  Google Scholar 

  9. Bruel-Jungerman E, Davis S, Rampon C, Laroche S (2006) Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci 26:5888–5893

    Article  PubMed  CAS  Google Scholar 

  10. Calabrese F, Molteni R, Racagni G, Riva MA (2009) Neuronal plasticity: a link between stress and mood disorders. Psychoneuroendocrinology 34(Suppl 1):S208–S216

    Article  PubMed  CAS  Google Scholar 

  11. Caspary DM, Milbrandt JC, Helfert RH (1995) Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol 30:349–360

    Article  PubMed  CAS  Google Scholar 

  12. Cazals Y (2000) Auditory sensori-neural alterations induced by salicylate. Prog Neurobiol 62:583–631

    Article  PubMed  CAS  Google Scholar 

  13. Charney DS, Manji HK (2004) Life stress, genes, and depression: multiple pathways lead to increased risk and new opportunities for intervention. Sci STKE 2004:re5-

    Article  PubMed  Google Scholar 

  14. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33:18–41

    Article  PubMed  Google Scholar 

  15. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129:1659–1673

    Article  PubMed  CAS  Google Scholar 

  16. Driver AS, Kodavanti PR, Mundy WR (2000) Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22:175–181

    Article  PubMed  CAS  Google Scholar 

  17. Durham D, Park DL, Girod DA (2000) Central nervous system plasticity during hair cell loss and regeneration. Hear Res 147:145–159

    Article  PubMed  CAS  Google Scholar 

  18. Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112:257–269

    Article  PubMed  CAS  Google Scholar 

  19. Eggermont JJ (2005) Tinnitus: neurobiological substrates. Drug Discov Today 10:1283–1290

    Article  PubMed  Google Scholar 

  20. Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27:676–682

    Article  PubMed  CAS  Google Scholar 

  21. Eriksson PS, Perfilieva E, Bjork-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  22. Flavell SW, Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu Rev Neurosci 31:563–590

    Article  PubMed  CAS  Google Scholar 

  23. Fujino K, Oertel D (2003) Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proc Natl Acad Sci U S A 100:265–270

    Article  PubMed  CAS  Google Scholar 

  24. Fumagalli F, Bedogni F, Perez J et al (2004) Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. Eur J Neurosci 20:1348–1354

    Article  PubMed  Google Scholar 

  25. Gil-Loyzaga P, Iglesias MC, Carricondo F et al (2009) Cochlear nuclei neuroplasticity after auditory nerve and cochlea removal. Audiol Med 7:29–39

    Article  Google Scholar 

  26. Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1:67–73

    Article  PubMed  CAS  Google Scholar 

  27. Hogsden JL, Dringenberg HC (2009) Decline of long-term potentiation (LTP) in the rat auditory cortex in vivo during postnatal life: involvement of NR2B subunits. Brain Res 1283:25–33

    Article  PubMed  CAS  Google Scholar 

  28. Horlemann J, Zieglgansberger W (2009) Schmerzverarbeitung, Schmerzgedächtnis und Schlafqualität. Dtsch Med Wochenschr 134(Suppl 4):S127–S131

    Article  PubMed  Google Scholar 

  29. Howland JG, Wang YT (2008) Synaptic plasticity in learning and memory: stress effects in the hippocampus. Prog Brain Res 169:145–158

    Article  PubMed  CAS  Google Scholar 

  30. Hu D, Serrano F, Oury TD, Klann E (2006) Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J Neurosci 26:3933–3941

    Article  PubMed  CAS  Google Scholar 

  31. Jastreboff PJ, Jastreboff MM (2000) Tinnitus retraining therapy (TRT) as a method for treatment of tinnitus and hyperacusis patients. J Am Acad Audiol 11:162–177

    PubMed  CAS  Google Scholar 

  32. Kaltenbach JA (2007) The dorsal cochlear nucleus as a contributor to tinnitus: mechanisms underlying the induction of hyperactivity. Prog Brain Res 166:89–106

    Article  PubMed  CAS  Google Scholar 

  33. Kaltenbach JA, Zhang J, Finlayson P (2005) Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus. Hear Res 206:200–226

    Article  PubMed  Google Scholar 

  34. Kamsler A, Segal M (2003) Paradoxical actions of hydrogen peroxide on long-term potentiation in transgenic superoxide dismutase-1 mice. J Neurosci 23:10359–10367

    PubMed  CAS  Google Scholar 

  35. Kandel ER (2001) Psychotherapy and the single synapse: the impact of psychiatric thought on neurobiological research. J Neuropsychiatry Clin Neurosci 13:290–300

    PubMed  CAS  Google Scholar 

  36. Kandel ER, Schwartz JH, Jessel TM (2000) Principles of neural science. McGraw-Hill, New York

  37. Karege F, Perret G, Bondolfi G et al (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109:143–148

    Article  PubMed  CAS  Google Scholar 

  38. Kauer JA, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858

    Article  PubMed  CAS  Google Scholar 

  39. Kempermann G, Gast D, Kronenberg G et al (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399

    Article  PubMed  CAS  Google Scholar 

  40. Kimura M, Eggermont JJ (1999) Effects of acute pure tone induced hearing loss on response properties in three auditory cortical fields in cat. Hear Res 135:146–162

    Article  PubMed  CAS  Google Scholar 

  41. Kleinlogel S, Oestreicher E, Arnold T et al (1999) Metabotropic glutamate receptors group I are involved in cochlear neurotransmission. Neuroreport 10:1879–1882

    Article  PubMed  CAS  Google Scholar 

  42. Knapp LT, Klann E (2002) Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res 70:1–7

    Article  PubMed  CAS  Google Scholar 

  43. Kotak VC, Breithaupt AD, Sanes DH (2007) Developmental hearing loss eliminates long-term potentiation in the auditory cortex. Proc Natl Acad Sci U S A 104:3550–3555

    Article  PubMed  CAS  Google Scholar 

  44. Kotak VC, Fujisawa S, Lee FA et al (2005) Hearing loss raises excitability in the auditory cortex. J Neurosci 25:3908–3918

    Article  PubMed  CAS  Google Scholar 

  45. Laske C, Eschweiler GW (2006) Brain-derived neurotrophic factor. Vom Nervenwachstumsfaktor zum Plastizitätsmodulator bei kognitiven Prozessen und psychischen Erkrankungen. Nervenarzt 77:523–537

    Article  PubMed  CAS  Google Scholar 

  46. Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10:86–98

    Article  PubMed  Google Scholar 

  47. Ma WL, Hidaka H, May BJ (2006) Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus. Hear Res 212:9–21

    Article  PubMed  Google Scholar 

  48. Mahlke C, Wallhausser-Franke E (2004) Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry. Hear Res 195:17–34

    Article  PubMed  CAS  Google Scholar 

  49. Manji HK, Chen G (2002) PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol Psychiatry 7(Suppl 1):S46–S56

    Article  PubMed  CAS  Google Scholar 

  50. Mazurek B, Stover T, Haupt H et al (2007) Die Rolle der kochleären Neurotransmitter in Bezug auf Tinnitus. HNO 55:964–971

    Article  PubMed  CAS  Google Scholar 

  51. McGahon BM, Murray CA, Horrobin DF, Lynch (1999) Age-related changes in oxidative mechanisms and LTP are reversed by dietary manipulation. Neurobiol Aging 20:643–653

    Article  PubMed  CAS  Google Scholar 

  52. Milbrandt JC, Holder TM, Wilson MC et al (2000) GAD levels and muscimol binding in rat inferior colliculus following acoustic trauma. Hear Res 147:251–260

    Article  PubMed  CAS  Google Scholar 

  53. Moller AR (2003) Pathophysiology of tinnitus. Otolaryngol Clin North Am 36:249–252vi

    Article  PubMed  Google Scholar 

  54. Moller AR (2006) Hearing: anatomy, physiology, and disorders of the auditory system (2. Aufl.). Academic Press, Amsterdam

  55. Mukherjee J, Christian BT, Dunigan KA et al (2002) Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 46:170–188

    Article  PubMed  CAS  Google Scholar 

  56. Murray CA, Lynch MA (1998) Evidence that increased hippocampal expression of the cytokine interleukin-1 beta is a common trigger for age- and stress-induced impairments in long-term potentiation. J Neurosci 18:2974–2981

    PubMed  CAS  Google Scholar 

  57. O’Donnell E, Vereker E, Lynch MA (2000) Age-related impairment in LTP is accompanied by enhanced activity of stress-activated protein kinases: analysis of underlying mechanisms. Eur J Neurosci 12:345–352

    Article  Google Scholar 

  58. Pan W, Banks WA, Fasold MB et al (1998) Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37:1553–1561

    Article  PubMed  CAS  Google Scholar 

  59. Panford-Walsh R, Singer W, Ruttiger L et al (2008) Midazolam reverses salicylate-induced changes in brain-derived neurotrophic factor and arg3.1 expression: implications for tinnitus perception and auditory plasticity. Mol Pharmacol 74:595–604

    Article  PubMed  CAS  Google Scholar 

  60. Pavon N, Vidal L, Blanco L et al (1998) Factors that lead to death of neurons in neurodegenerative diseases. Rev Neurol 26:554–560

    PubMed  CAS  Google Scholar 

  61. Poduslo JF, Curran GL (1996) Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res Mol Brain Res 36:280–286

    Article  PubMed  CAS  Google Scholar 

  62. Poo MM (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2:24–32

    Article  PubMed  CAS  Google Scholar 

  63. Pujol R, Puel JL (1999) Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci 884:249–254

    Article  PubMed  CAS  Google Scholar 

  64. Ruttiger L, Panford-Walsh R, Schimmang T et al (2007) BDNF mRNA expression and protein localization are changed in age-related hearing loss. Neurobiol Aging 28:586–601

    Article  PubMed  CAS  Google Scholar 

  65. Salvi RJ, Saunders SS, Gratton MA et al (1990) Enhanced evoked response amplitudes in the inferior colliculus of the chinchilla following acoustic trauma. Hear Res 50:245–257

    Article  PubMed  CAS  Google Scholar 

  66. Salvi RJ, Wang J, Ding D (2000) Auditory plasticity and hyperactivity following cochlear damage. Hear Res 147:261–274

    Article  PubMed  CAS  Google Scholar 

  67. Salvinelli F, Casale M, Paparo F et al (2003) Subjective tinnitus, temporomandibular joint dysfunction, and serotonin modulation of neural plasticity: causal or casual triad? Med Hypotheses 61:446–448

    Article  PubMed  CAS  Google Scholar 

  68. Saunders JC (2007) The role of central nervous system plasticity in tinnitus. J Commun Disord 40:313–334

    Article  PubMed  Google Scholar 

  69. Schule C, Baghai TC, Rupprecht R (2007) Neue Erkenntnisse zur Pathogenese und Pathophysiologie der Depression. Nervenarzt 78(Suppl 3):531–547

    Article  PubMed  Google Scholar 

  70. Serrano F, Klann E (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 3:431–443

    Article  PubMed  CAS  Google Scholar 

  71. Shimizu E, Hashimoto K, Okamura N et al (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75

    Article  PubMed  CAS  Google Scholar 

  72. Sun W, Lu J, Stolzberg D et al (2009) Salicylate increases the gain of the central auditory system. Neuroscience 159:325–334

    Article  PubMed  CAS  Google Scholar 

  73. Szczepaniak WS, Moller AR (1996) Effects of (-)-baclofen, clonazepam, and diazepam on tone exposure-induced hyperexcitability of the inferior colliculus in the rat: possible therapeutic implications for pharmacological management of tinnitus and hyperacusis. Hear Res 97:46–53

    Article  PubMed  CAS  Google Scholar 

  74. Tan J, Ruttiger L, Panford-Walsh R et al (2007) Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma. Neuroscience 145:715–726

    Article  PubMed  CAS  Google Scholar 

  75. Thome J, Duman RS, Henn FA (2002) Molekulare Aspekte antidepressiver Therapy: Transsynaptische Effekte auf Signaltransduktion, Genexpression und neuronale Plastizität. Nervenarzt 73:595–599

    Article  PubMed  CAS  Google Scholar 

  76. Vale C, Sanes DH (2000) Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. J Neurosci 20:1912–1921

    PubMed  CAS  Google Scholar 

  77. Vale C, Sanes DH (2002) The effect of bilateral deafness on excitatory and inhibitory synaptic strength in the inferior colliculus. Eur J Neurosci 16:2394–2404

    Article  PubMed  Google Scholar 

  78. Goltz C von der, Kiefer F (2008) Bedeutung von Lernen und Gedächtnis in der Pathogenese von Suchterkrankungen. Nervenarzt 79:1006–1016

    Article  PubMed  Google Scholar 

  79. Wallhausser-Franke E, Mahlke C, Oliva R et al (2003) Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus. Exp Brain Res 153:649–654

    Article  PubMed  CAS  Google Scholar 

  80. Wang H, Turner JG, Ling L et al (2009) Age-related changes in glycine receptor subunit composition and binding in dorsal cochlear nucleus. Neuroscience 160:227–239

    Article  PubMed  CAS  Google Scholar 

  81. Webster MJ, Weickert CS, Herman MM, Kleinman JE (2002) BDNF mRNA expression during postnatal development, maturation and aging of the human prefrontal cortex. Brain Res Dev Brain Res 139:139–150

    Article  PubMed  CAS  Google Scholar 

  82. Willott JF (1999) Neurogerontology: Aging and the nervous system. Springer, New York

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mazurek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazurek, B., Olze, H., Haupt, H. et al. Molekularbiologische Aspekte der Neuroplastizität. HNO 58, 973–982 (2010). https://doi.org/10.1007/s00106-010-2177-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-010-2177-8

Schlüsselwörter

Keywords

Navigation