Skip to main content
Log in

Miniorgankulturen humaner nasaler Mukosa

Ein Modell für ökogenotoxikologische Untersuchungen

Genotoxicity studies in mini-organ cultures of human nasal mucosa

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Für inhalative und ingestive Umwelt- und Arbeitsstoffe ist das Epithel des oberen Aerodigestivtrakts das primäre Kontaktorgan. In diesem Zielgewebe entstehen durch Xenobiotika induzierte Karzinome. Über ein Modell epithelialer Miniorgankulturen zur Untersuchung genotoxischer Effekte wird hier berichtet.

Methode

Humane Mukosafragmente der unteren Nasenmuschel wurden als Miniorgane kultiviert und ein-, zwei- und dreifach gegenüber den potenziell mutagenen Substanzen N-Nitrosodiethylamin (NDEA), Benzo[a]pyren-7,8-dihydrodiol-9,10-epoxid (BPDE) und Natriumdichromat (Na2Cr2O7) mit anschließenden Reparaturphasen exponiert. Untersucht wurde die strukturelle Integrität der Miniorgankulturen (inverse Mikroskopie, Histologie), das Auftreten von DNA-Strangbrüchen und Reparaturaktivitäten mittels Einzelzellmikrogelelektrophorese (Comet Assay), die Apoptoseinduktion über Phosphatidylserinverlagerung (Annexin V Assay) sowie die Bildung der Entzündungsparameter Interleukin 8 und Granulozyten-Makrophagen-Kolonie-stimulierender-Faktor (ELISA).

Ergebnisse

Während einer zweiwöchigen Kultivierung blieben die Miniorgane strukturell intakt. Mehrfache Expositionen gegenüber NDEA und BPDE waren mit gesteigerter DNA-Migration verbunden. Na2Cr2O7 verursachte mit jeder weiteren Exposition höhere DNA-Fragmentierungen. Eine Reduzierung der DNA-Schäden im Sinne einer Reparatur war lediglich nach Exposition mit Na2Cr2O7 zu beobachten. Nach NDEA-Exposition zeigte sich keine, nach dreifacher BPDE- und Na2Cr2O7-Belastung jedoch eine signifikante Apoptoseinduktion. Entzündungsreaktionen über Veränderungen der Zytokinfreisetzung von Miniorgankulturen wurden nach NDEA-Belastung nicht nachgewiesen. Mehrfache BPDE- und Na2Cr2O7-Expositionen verursachten aber einen Rückgang der GM-CSF-Produktion, Na2Cr2O7 zusätzlich eine Reduzierung der IL-8-Freisetzung von Miniorganen.

Schlussfolgerung

Das dreidimensionale Miniorgankulturmodell humaner nasaler Mukosazellen konnte potenzielle Gefahrenstoffe in einer in-vivo-nahen Situation charakterisieren. Es erwies sich nicht nur für genotoxikologische, sondern auch für zytologische und immunologische Untersuchungen als geeignet und erlaubte mehrfache Expositionen mit anschließenden Reparaturphasen. Die metabolische Kompetenz dieser Organkulturen konnte durch die Produktion von Entzündungsparametern gezeigt werden.

Abstract

Background

Volatile and ingestive xenobiotics may induce cancer in the mucosa of the upper aerodigestive tract. A new model is presented combining mini-organ cultures of human mucosa and the Comet assay that allows investigation of tumor initiation steps in vitro.

Method

Specimens of human mucosa of the inferior nasal turbinates were cultured as mini-organs and exposed to xenobiotics once, twice or three times with consecutive repair intervals. The cultures were monitored for structural integrity (inverse microscopy, histology), DNA fragmentation and repair activity (Comet assay), induction of apoptosis (annexin V assay), and production of IL-8 and GM-CSF (ELISA).

Results

Mini-organ cultures showed a good structural integrity during the whole culture period. Exposure to N-nitrosodiethylamine (NDEA) and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) induced significant DNA fragmentation. Sodium dichromate (Na2Cr2O7) had an additive DNA fragmentation effect with repetitive exposure. Significant DNA repair was seen after strand break induction by Na2Cr2O7, only. Apoptosis was seen after three exposures to BPDE und Na2Cr2O7, but not NDEA. Inflammatory cytokine release was unaltered by NDEA. However, BPDE and Na2Cr2O7 reduced GM-CSF and Na2Cr2O7 reduced IL-8 excretion.

Conclusion

This three dimensional mini-organ culture system proved to be very helpful in characterizing volatile and ingestive xenobiotics potentially hazardous to humans. Beside the information concerning genotoxicity, it allows cytological and immunological studies. In contrast to investigations with fresh specimens, repetitive or chronic exposure to xenobiotics is possible in mucosal cells with their epithelial structural integrity. Therefore, mini-organ cultures of human upper aerodigestive tract epithelia represent a model closely resembling the in vivo situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Maier H, Tisch M, Kyrberg H, Conradt C, Weisauer H (2002) Occupational hazardous substance exposure and nutrition. Risk factors for mouth, pharyngeal and laryngeal carcinomas? HNO 50: 743–752

    Article  CAS  PubMed  Google Scholar 

  2. Pool-Zobel BL, Lotzmann N, Knoll M, Kuchenmeister F, Lambertz R, Leucht U, Schröder HG, Schmezer P (1994) Detection of genotoxic effects in human gastric and nasal mucosa cells isolated from biopsy samples. Environ Mol Mutagen 24: 23–45

    CAS  PubMed  Google Scholar 

  3. Harréus U, Schmezer P, Kuchenmeister F, Maier H (1999) Genotoxische Wirkung auf menschliche Schleimhautbiopsien des oberen Aerodigestivtraktes. Laryngorhinootologie 78: 176–181

    PubMed  Google Scholar 

  4. Kleinsasser NH, Wallner BC, Kastenbauer ER, Münzenrieder RK, Harréus UA (2000) Comparing the genotoxic sensitivities of human peripheral blood lymphocytes and mucosa cells of the upper aerodigestive tract using the comet assay. Mutat Res 467: 21–30

    CAS  PubMed  Google Scholar 

  5. Harreus UA, Baumeister P, Wallner BC, Berghasu A, Kleinsasser NH (2005) Carcinogenic and co-carcinogenic effects of metals and ethanol on human salivary gland tissue. HNO 53: 155–162

    Article  CAS  PubMed  Google Scholar 

  6. Kleinsasser NH, Gamarra F, Bergner A, Wallner BC, Harréus UA, Juchhoff J, Kastenbauer ER, Huber RM (2001) Genotoxicity of nitroso compounds and sodium dichromate in a model combining organ cultures of human nasal epithelia and the comet assay. ORL J Otorhinolaryngol Relat Spec 63: 141–147

    CAS  PubMed  Google Scholar 

  7. Kleinsasser NH, Juchhoff J, Wallner BC, Bergner A, Harréus UA, Gamarra F, Huber RM, Rettenmeier AW (2004) The use of mini organ cultures of human upper aerodigestive tract epithelia in ecogenotoxicology. Mutation Res 561: 63–73

    CAS  PubMed  Google Scholar 

  8. Steinsvag SK, Strand M, Berg O, Miaguchi M, Olofsson J (1991) Human respiratory mucosa in a nonadhesive stationary organ culture system. Laryngoscope 101: 1323–1331

    CAS  PubMed  Google Scholar 

  9. Kleinsasser NH, Kastenbauer ER, Zieger S, Baluschko T, Wallner BC, Harréus UA (2003) Lagerung humaner nasaler Mukosa für die Einzelzell-Mikrogelelektrophorese. HNO 51: 134–139

    Article  CAS  PubMed  Google Scholar 

  10. Kleinsasser NH, Kastenbauer ER, Wallner BC, Weissacher H, Harreus UA (2001) Genotoxizität von Phthalaten. Zur Diskussion über Weichmacher in Kinderzpielzeug. HNO 49: 378–381

    Article  CAS  PubMed  Google Scholar 

  11. Tisch M, Bergenthal S, Maier H (2002) Genotoxische Wirkung von Pentachlorphenol und Lindan® auf humane Tonsillenschleimhautepithelien. HNO 50: 920–927

    Article  CAS  PubMed  Google Scholar 

  12. Olive PL, Banath JP (1993) Induction and rejoining of radiation-induced DNA single-strand breaks: „tail moment“ as a function of position in the cell cycle. Mutat Res 294: 275–283

    CAS  PubMed  Google Scholar 

  13. Al-Batran SE, Astner ST, Supthut M, Gamarra F, Brueckner K, Welsch U, Knuechel R, Huber PM (1999) Three-dimensional in vitro cocultivation of lung carcinoma cells with human bronchial organ culture as a model for bronchial carcinoma. Am J Respir Cell Mol Biol 21: 200–208

    CAS  PubMed  Google Scholar 

  14. Mace K, Offord EA, Harris C, Pfeifer AM (1998) Development of in vitro models for cellular and molecular studies in toxicology and chemoprevention. Arch Toxicol Suppl 20: 227–236

    CAS  PubMed  Google Scholar 

  15. Olive PL, Durand RE (1994) Drug and radiation in spheroids: cell contact and kinetics. Cancer Metastasis Rev 13: 121–138

    Article  CAS  PubMed  Google Scholar 

  16. Conney AH, Chang RC, Jerina DM, Wei SJC (1994) Studies on the metabolism of benzo[a]pyrene and dose-dependent differences in the mutagenic profile of its ultimate carcinogenic metabolite. Drug Metab Rev 26: 125–163

    CAS  PubMed  Google Scholar 

  17. Venkatachalam MA, Weinberg JM, Patel Y, Hussong U, Davis JA (1995) Effects of Ca++ and glycine on lipid breakdown and death of ATP-depleted MDCK cells. Kidney Int 48: 118–128

    CAS  PubMed  Google Scholar 

  18. Manning FCR, Blankenship LJ, Wise JP, Xu J, Bridgewater LC, Patierno SR (1994) Induction of internucleosomal DNA fragmentation by carcinogenic chromate: relationship to DNA damage, genotoxicity, and inhibition of macromolecular synthesis. Environ Health Perspect 102: 159–167

    CAS  Google Scholar 

  19. Jablonski J, Jablonska E, Moniuszko-Jakoniuk J, Holownia A (1999) Evaluation of the influence of N-nitrosodimethyloamine (NDMA) on the apoptosis of neutrophils of peripheral blood (PMN) and the expression of the IL-6R membrane receptor-in vitro research. Immunol Invest 28: 177–184

    CAS  PubMed  Google Scholar 

  20. Lin H, Parsels LA, Maybaum J, Hollenberg PF (1999) N-Nitrosodimethylamine-mediated cytotoxicity in a cell line expressing P450 2E1: evidence for apoptotic cell death. Toxicol Appl Pharmacol 157: 117–124

    Article  CAS  PubMed  Google Scholar 

  21. Salas VM, Burchiel SW (1998) Apoptosis in Daudi human B cells in response to benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol. Toxicol Appl Pharmacol 151: 367–376

    Article  CAS  PubMed  Google Scholar 

  22. Lei W, Yu R, Mandlekar S, Kong AN (1998) Induction of apoptosis and activation of interleukin 1beta-converting enzyme/Ced-3 protease (caspase-3) and c-Jun NH2-terminal kinase 1 by benzo[a]pyrene. Cancer Res 58: 2102–2106

    CAS  PubMed  Google Scholar 

  23. Chan A, Reiter R, Wiese S, Fertig G, Gold R (1998) Plasma membrane phospholipid asymmetry precedes DNA fragmentation in different apoptotic cell models. Histochem Cell Biol 110: 553–558

    Article  CAS  PubMed  Google Scholar 

  24. Singh J, McLean JA, Pritchard DE, Montaser A, Patierno SR (1998) Sensitive quantitation of chromium-DNA adducts by inductively coupled plasma mass spectrometry with a direct injection high efficiency nebulizer. Toxicol Sci 46: 260–265

    Article  CAS  PubMed  Google Scholar 

  25. Fairbairn DW, Walburger DK, Fairbairn JJ, O’Neill KL (1996) Key morphologic changes and DNA strand breaks in human lymphoid cells: discriminating apoptosis from necrosis. Scanning 18: 407–416

    CAS  PubMed  Google Scholar 

  26. Cummings BS, Lasker JM, Lash LH (2000) Expression of glutathione-dependent enzymes and cytochrome P450 s in freshly isolated and primary cultures of proximal tubular cells from human kidney. J Pharmacol Exp Ther 293: 677–685

    CAS  PubMed  Google Scholar 

  27. Boland S, Baeza-Squiban A, Fournier T, Houcine O, Gendron MC, Chevrier M, Jouvenot G, Coste A, Aubier M, Marano F (1999) Diesel exhaust particles are taken up by airway epithelial cells in vitro and alter cytokine production. Am J Physiol 276: 604–613

    Google Scholar 

  28. Samet JM, Graves LM, Quay J et al. (1998) Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am J Physiol 275: 551–558

    Google Scholar 

  29. Tarr PE (1996) Granulocyte-macrophage colony-stimulating factor and the immune system. Med Oncol 13: 133–140

    CAS  PubMed  Google Scholar 

  30. Rioux N, Castonguay A (2001) 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone modulation of cytokine release in U937 human macrophages. Cancer Immunol Immunother 49: 663–670

    Article  CAS  PubMed  Google Scholar 

  31. Sato E, Koyama S, Takamizawa A, Masubuchi T, Kubo K, Robbins RA, Nagai S, Izumi T (1999) Smoke extract stimulates lung fibroblasts to release neutrophil and monocyte chemotactic activities. Am J Physiol 277: 1149–1157

    Google Scholar 

  32. Granchi D, Verri E, Ciapetti G, Savarino L, Cenni E, Gori A, Pizzoferrato A (1998) Effects of chromium extract on cytokine release by mononuclear cells. Biomaterials 19: 283–291

    Article  CAS  PubMed  Google Scholar 

  33. Wilmer JL, Burleson FG, Kayama F, Kanno J, Luster MI (1994) Cytokine induction in human epidermal keratinocytes exposed to contact irritants and its relation to chemical-induced inflammation in mouse skin. J Invest Dermatol 102: 915–922

    Article  CAS  PubMed  Google Scholar 

  34. Watson WP, Smith RJ, Huckle KR, Wright AS (1988) Human organ culture techniques for the detection and evaluation of genotoxic agents. IARC Sci Publ 89: 384–388

    PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Kleinsasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallner, B.C., Harréus, U.A., Gamarra, F. et al. Miniorgankulturen humaner nasaler Mukosa. HNO 53, 1037–1046 (2005). https://doi.org/10.1007/s00106-005-1243-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-005-1243-0

Schlüsselwörter

Keywords

Navigation