Skip to main content
Log in

Andrologische Beratung bei neuen onkologischen Systemtherapien mit „small molecules“

Andrological consultation in new systemic oncological therapies with small molecules

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Die sog. „small molecules“ erweitern das Spektrum onkologischer Systemtherapien rasant. Zielproteine dieser Medikamentengruppe sind u. a. die Tyrosinkinasen VEGF(„vascular endothelial growth factor“)-R, EGF(„epidermal-growth-factor“)-R, Bcr-Abl, c‑kit, JAK („just another-kinase“, Januskinase), CDK („cycline dependent kinases“/cyclinabhängige Kinasen) u. a. In der Dermatologie gehören die Serin-Threonin-Kinasen BRAF und MEK beim Melanom und der Transmembranrezeptor SMO („smoothened“) beim Basalzellkarzinom dazu. Die Auswirkungen dieser zielgerichteten Therapien auf die männliche Fertilität sind z. T. nur unzureichend untersucht. Klinische Daten gibt es meist nur für die älteren Präparate. Darüber hinaus handelt es sich häufig um Multikinaseinhibitoren, sodass selbst „small molecules“ mit gleichem (Haupt‑)Target nicht vollständig vergleichbar sind. Bei unzureichender Datenlage sollte vor einer Therapie unter Berücksichtigung individueller Suszeptibilitätsunterschiede und andrologischer Vorerkrankungen eine Spermienkryokonservierung angeboten werden.

Abstract

Small molecules are rapidly broadening the spectrum of systemic oncologic therapies. Targets of those drugs are—among others—tyrosine and serine/threonine kinases like VEGF-R, EGF-R, Bcr-Abl, c‑kit, JAK, CDK as well as BRAF and MEK. Clinical data of potential risks to male fertility are still very limited and are generally only available for older preparations. In addition, they are often multikinase inhibitors, so that even small molecules with the same (main) target are not completely comparable. For fertility protection, sperm cryopreservation should be offered to men seeking fatherhood before starting targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

ABL:

„Abelson murine leukemia viral oncogene homolog“

ALK:

Anaplastische Lymphomkinase

ATP:

Adenosintriphosphat

AXL:

Unkontrolliert (gr.: „anexelekto“)

BCR-ABL:

„Breakpoint cluster region – Abelson murine leukemia viral oncogene homolog“

BRAF:

„B-Rapidly growing fibrosarcoma“

CDK:

Cyclinabhängige Kinasen („cycline dependent kinases“)

c-MET:

„Hepatocyte growth factor (HGF) receptor“

EGF:

„Epidermal growth factor“

FGF-R:

„Fibroblast growth factor receptor“

FLT3:

„Fms-like tyrosine 3“

GnRH:

„Gonadotropin releasing hormone“

JAK:

„Just another-kinase“, Januskinase

MAPK:

„Mitogen activated protein kinase“

MEK:

„Mitogen-activated protein kinase kinase“

PDGF:

„Platelet-derived-growth-factor“

RAF‑1:

„Rapidly growing fibrosarcoma‑1“

RET:

„Rearranged during transfection“

SMO:

„Smoothened“

TIE2:

„TEK receptor tyrosine kinase“

VEGF:

„Vascular endothelial growth factor“

Literatur

  1. Green MR (2004) Targeting targeted therapy. N Engl J Med 350:2191–2193

    Article  CAS  Google Scholar 

  2. Noonberg SB, Benz CC (2000) Tyrosine kinase inhibitors targeted to the epidermal growth factor receptor subfamily: role as anticancer agents. Drugs 59:753–767

    Article  CAS  Google Scholar 

  3. Glade-Bender J, Kandel JJ, Yamashiro DJ (2003) VEGF blocking therapy in the treatment of cancer. Expert Opin Biol Ther 3:263–276

    Article  CAS  Google Scholar 

  4. Coburn AM, Cappon GD, Bowman CJ et al (2012) Reproductive toxicity assessment of sunitinib, a multitargeted receptor tyrosine kinase inhibitor, in male and female rats. Birth Defects Res B Dev Reprod Toxicol 95:267–275

    Article  CAS  Google Scholar 

  5. Shetty SD, Bairy LK (2015) Effect of sorafenib on sperm count and sperm motility in male Swiss albino mice. J Adv Pharm Technol Res 6:165–169

    Article  CAS  Google Scholar 

  6. cabozantinib (COMETRIQ(0)) (2016) In medullary thyroid cancer: more harmful than beneficial, as is vandetanib. Prescrire Int 25:11–13

    Google Scholar 

  7. Nimjee SM, White RR, Becker RC et al (2017) Aptamers as therapeutics. Annu Rev Pharmacol Toxicol 57:61–79

    Article  CAS  Google Scholar 

  8. Xu MJ, Johnson DE, Grandis JR (2017) EGFR-targeted therapies in the post-genomic era. Cancer Metastasis Rev 36:463–473

    Article  Google Scholar 

  9. Schenone S, Bruno O, Radi M et al (2011) New insights into small-molecule inhibitors of Bcr-Abl. Med Res Rev 31:1–41

    Article  CAS  Google Scholar 

  10. Chang X, Zhou L, Chen X et al (2017) Impact of Imatinib on the fertility of male patients with chronic myelogenous leukaemia in the chronic phase. Target Oncol 12:827–832

    Article  Google Scholar 

  11. Hashemnia SM, Atari-Hajipirloo S, Roshan-Milani S et al (2016) Imatinib alters cell viability but not growth factors levels in TM4 Sertoli cells. Int J Reprod Biomed (Yazd) 14:577–582

    Article  CAS  Google Scholar 

  12. Shash E, Bassi S, Cocorocchio E et al (2011) Fatherhood during imatinib. Acta Oncol 50:734–735

    Article  Google Scholar 

  13. Cortes JE, Abruzzese E, Chelysheva E et al (2015) The impact of dasatinib on pregnancy outcomes. Am J Hematol 90:1111–1115

    Article  CAS  Google Scholar 

  14. Oweini H, Otrock ZK, Mahfouz RA et al (2011) Successful pregnancy involving a man with chronic myeloid leukemia on dasatinib. Arch Gynecol Obstet 283:133–134

    Article  Google Scholar 

  15. Zhou L, You JH, Wu W et al (2013) Pregnancies in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitor. Leuk Res 37:1216–1221

    Article  CAS  Google Scholar 

  16. Ferrajoli A, Faderl S, Ravandi F et al (2006) The JAK-STAT pathway: a therapeutic target in hematological malignancies. Curr Cancer Drug Targets 6:671–679

    Article  CAS  Google Scholar 

  17. Senkevitch E, Durum S (2017) The promise of Janus kinase inhibitors in the treatment of hematological malignancies. Cytokine 98:33–41

    Article  CAS  Google Scholar 

  18. Li J, Zhang L, Li B (2017) Correlative study on the JAK-STAT/PSMbeta3 signal transduction pathway in asthenozoospermia. Exp Ther Med 13:127–130

    Article  CAS  Google Scholar 

  19. Sutovsky P (2003) Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc Res Tech 61:88–102

    Article  CAS  Google Scholar 

  20. Hou M, Eriksson E, Svechnikov K et al (2014) Bortezomib treatment causes long-term testicular dysfunction in young male mice. Mol Cancer 13:155

    Article  Google Scholar 

  21. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166

    Article  CAS  Google Scholar 

  22. Witek B, El Wakil A, Nord C et al (2015) Targeted disruption of ALK reveals a potential role in hypogonadotropic Hypogonadism. PLoS ONE 10:e123542

    Article  Google Scholar 

  23. Grunewald S, Jank A (2015) New systemic agents in dermatology with respect to fertility, pregnancy, and lactation. J Dtsch Dermatol Ges 13:277–289 (quiz 90)

    PubMed  Google Scholar 

  24. Amann VC, Ramelyte E, Thurneysen S et al (2017) Developments in targeted therapy in melanoma. Eur J Surg Oncol 43:581–593

    Article  CAS  Google Scholar 

  25. Cocorocchio E, Pala L, Battaglia A et al (2018) Fatherhood during dabrafenib and trametinib therapy for metastatic melanoma. Acta Oncol 57:1131–1133

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Weidner.

Ethics declarations

Interessenkonflikt

T. Weidner, U. Paasch und S. Grunewald geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weidner, T., Paasch, U. & Grunewald, S. Andrologische Beratung bei neuen onkologischen Systemtherapien mit „small molecules“. Hautarzt 69, 984–990 (2018). https://doi.org/10.1007/s00105-018-4299-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-018-4299-y

Schlüsselwörter

Keywords

Navigation