Skip to main content
Log in

Klinischer Einsatz der 3D-Echokardiographie in der Herzchirurgie

Aktueller Stand und Perspektiven

Three-dimensional echocardiography in cardiac surgery

Current status and perspectives

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Die dreidimensionale (3D-)Echokardiographie ist eine neue Bildgebungstechnik, die wertvolle Informationen über die kardiovaskuläre Morphologie, Pathologie und Funktion vermittelt. Die neuesten Entwicklungen wie Verbesserung der Geräte, Datenakquisition, Post-processing und schnellere Rechner haben dazugeführt, dass die 3D-Echokardiographie nun zu einem wichtigen Bestandteil der klinischen Ultraschalldiagnostik geworden ist. Die aus 3D-Datensets gewonnenen Informationen über die Morphologie des linken und rechten Ventrikels sowie die komplexen Klappenerkrankungen und kongenitalen Defekte sind heute für die Planung herzchirurgischer Eingriffe notwendig. Die dreidimensionale Rekonstruktion des Farbdopplersignals ermöglicht zudem die In-vivo-Visualisierung und Quantifizierung von intrakavitären Regurgitationsflüssen und Volumina der Regurgitationsjets über die Herzklappen, was für die Beurteilung des Schweregrads von Mitralklappeninsuffizienz von Bedeutung ist. Dieser Übersichtsartikel beschreibt den aktuellen Stand der 3D-Echokardiographie und deren klinische Wertigkeit in der Herzchirurgie anhand eigener Studien über die Morphologie, die Annulusdynamik und Flussmuster der Mitralklappe.

Abstract

Three-dimensional (3D) echocardiography is a new imaging technique that can provide useful information about cardiovascular morphology, pathology, and function. Recent refinements in instrumentation, data acquisition, post-processing, and computation speed allow 3D echocardiography to play an important role in cardiac imaging. These modalities provide comprehensive information on ventricular and valve morphology and function. Combined with 3D color Doppler sonography, further assessment of valvular function and determination of flow in the left ventricular outflow tract and cross-septal defects are now possible. Three-dimensional color flow imaging also makes echocardiography accurate for assessing the severity of mitral regurgitation. The purpose of this review is to describe technical developments in 3D echocardiography and its clinical application in cardiac surgery. Moreover, based on clinical studies at our centre, we describe the morphology of the mitral valve, its flow pattern, and function of the mitral annulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Aikat S, Lewis JF (2003) Role of echocardiography in the diagnosis and prognosis of patients with mitral regurgitation. Curr Opin Cardiol 18: 334–339

    Article  PubMed  Google Scholar 

  2. Albers J, Nitsche T, Boese J et al. (2004) Regurgitant jet evaluation using three-dimensional echocardiography and magnetic resonance. Ann Thorac Surg 78: 96–102

    Article  PubMed  Google Scholar 

  3. Binder TM, Rosenhek R, Porenta G et al. (2000) Improved assessment of mitral valve stenosis by volumetric real-time three-dimensional echocardiography. J Am Coll Cardiol 36: 1355–1361

    Article  PubMed  Google Scholar 

  4. Cheng TO, Xie MX, Wang XF et al. (2004) Real-time 3-dimensional echocardiography in assessing atrial and ventricular septal defects: An echocardiographic-surgical correlative study. Am Heart J 148: 1091–1095

    Article  PubMed  Google Scholar 

  5. Coons SA (1967) Surfaces for computer aided design of space forms. Massachusetts Institute of Technology. Technical Report: TR-41

    Google Scholar 

  6. Dekker DL, Piziali RL, Dong Jr E (1974) A system for ultrasonicaly imaging the human heart in three dimensions. Comput Biomed Res 7: 544–553

    Article  PubMed  Google Scholar 

  7. De Simone R, Glombitza G, Vahl CF et al. (1999) A new diagnostic procedure for assessing intracardiac flow disturbances in patients with valve disease. Thorac Cardiovasc Surg 47: 369–375

    PubMed  Google Scholar 

  8. De Simone R, Glombitza G, Vahl CF et al. (2000) Three-dimensional color Doppler flow reconstruction and its clinical applications. Echocardiography 17: 765–770

    PubMed  Google Scholar 

  9. De Simone R, Glombitza G, Vahl CF et al. (1999) Three-dimensional Doppler. Techniques and clinical applications. Eur Heart J 20: 619–627

    Article  PubMed  Google Scholar 

  10. De Simone R, Glombitza G, Vahl CF et al. (1999) Three-dimensional color Doppler: a new approach for quantitative assessment of mitral regurgitant jets. J Am Soc Echocardiogr 12: 173–185

    Article  PubMed  Google Scholar 

  11. De Simone R, Glombitza G, Vahl CF et al. (1999) Three-dimensional color Doppler for assessing mitral regurgitation during valvuloplasty. Eur J Cardiothorac Surg 15: 127–133

    Article  PubMed  Google Scholar 

  12. De Simone R, Glombitza G, Vahl CF et al. (1999) Assessment of mitral regurgitatnt jets by three-dimensional color Doppler. Ann Thorac Surg 67: 494–499

    Article  PubMed  Google Scholar 

  13. De Simone R, Wolf I, Mottl-Link S et al. (2006) A clinical study of annular geometry and dynamics in patients with ischemic mitral regurgitation: new insights into asymmetrical ring annuloplasty. Eur J Cardiothorac Surg 29: 355–361

    Article  PubMed  Google Scholar 

  14. De Simone R, Mottl-Link S, Wolf I et al. (2005) Intraoperative assessment of right ventricular volume and function. Eur J Cardiothorac Surg 6: 988–993

    Google Scholar 

  15. De Simone R, Glombitza G, Vahl CF et al. (eds) (1999) Three-dimensional color Doppler. An atlas of intracardiac flow imaging. Armonk Futura Publishing Company, New York

  16. De Simone R, Glombitza G, Vahl CF et al. (1999) Three-dimensional color Doppler. A clinical study in patients with mitral regurgitation. J Am Coll Cardiol 33: 1646–1654

    Article  PubMed  Google Scholar 

  17. Fabricius AM, Walther T, Falk V, Mohr FW (2004) Three-dimensional echocardiography for planning of mitral valve surgery: Current applicability? Ann Thorac Surg 78: 575–578

    Article  PubMed  Google Scholar 

  18. Glombitza G, De Simone R, Wolf I et al. (2000) Volumetric analysis and visualization of cardiologic ultrasound data. Radiologe 40: 168–175

    Article  PubMed  Google Scholar 

  19. Handke M, Heinrichs G, Beyersdorf F et al. (2003) In vivo analysis of aortic valve dynamics by transesophageal 3-dimensional echocardiography with high temporal resolution. J Thorac Cardiovasc 125: 1412–1419

    Article  Google Scholar 

  20. Handke M, Jahnke C, Heinrichs G et al. (2003) New three-dimensional echocardiographic system using digital radiofrequency data visualization and quantitative analysis of aortic valve dynamics with high resolution. Circulation 107: 2876–2879

    Article  PubMed  Google Scholar 

  21. Kisslo J, Firek B, Ota T et al. (2000) Real-time volumetric echocardiography: The technology and the posibilities. Echocardiography 17: 773–779

    PubMed  Google Scholar 

  22. Kwan J, Shiota T, Agler DA et al. (2002) Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation. Real-time three-dimensional echocardiography study. Circulation 107: 1135–1140

    Article  Google Scholar 

  23. Lange A, Palka P, Burstow DJ, Godman MJ (2001) Three-dimensional echocardiography: Historical development and current applications. J Am Soc Echocardiogr 14: 403–412

    Article  PubMed  Google Scholar 

  24. Lange A, Mankad P, Walayat et al. (2000) Transthoracic three-dimensional echocardiography in the preoperative assessment of atrioventricular septal defect morphology. Am J Cardiol 85: 630–635

    Article  PubMed  Google Scholar 

  25. Mor-Avi V, Sugeng L, Weinert L et al. (2004) Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: Comaprison with magnetic resonance imaging. Circulation 110: 1814–1818

    Article  PubMed  Google Scholar 

  26. Macnab A, Jenkins NP, Bridgewater BJM et al. (2004) Three-dimensional echocardiography is superior to multiplane transoesophageal echo in the assessment of regurgitatnt mitral valve morphology. Eur J Echocardiogr 5: 212–222

    Article  PubMed  Google Scholar 

  27. Salehian O, Chan KL (2005) Impact of three-dimensional echocardiography in valvular heart disease. Curr Opin Cardiol 20: 122–126

    Article  PubMed  Google Scholar 

  28. Valocik G, Kamp O, Visser CA (2005) Three-dimensional echocardiography in mitral valve disease. Eur J Echocardiography 6: 443–454

    Article  Google Scholar 

  29. Wang XF, Deng YB, Nanda NC et al. (2003) Live three-dimensional echocardiography: Imaging principles and clinical application. Echocardiography 20: 593–604

    Article  PubMed  Google Scholar 

  30. Wolf I, Glombitza G, De Simone R, Meinzer HP (2000) Automatic segmentation of heart cavities in multidimensional ultrasound images. Image Processing 3979: 273–283

    Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.R. Hoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoda, M., Schwarz, T., Wolf, I. et al. Klinischer Einsatz der 3D-Echokardiographie in der Herzchirurgie. Chirurg 78, 435–442 (2007). https://doi.org/10.1007/s00104-007-1329-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-007-1329-1

Schlüsselwörter

Keywords

Navigation