Skip to main content
Log in

Tissue Engineering für Herzklappen und Gefäße

Tissue engineering for heart valves and vascular grafts

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Der prothetische Ersatz von Herzklappen und Gefäßen ist ein etabliertes Verfahren in der Chirurgie. Die derzeit erhältlichen Implantate haben jedoch eine Reihe von Nachteilen, beispielsweise eine begrenzte Haltbarkeit bei biologischen Herzklappen, die Anfälligkeit für Infektionen und die Notwendigkeit einer lebenslangen Antikoagulationstherapie bei künstlichen Herzklappen als auch eine reduzierte Offenheitsrate bei kleinkalibrigen Gefäßprothesen. Mit Hilfe des Tissue Engineering auf der Grundlage von Polymer- oder dezellularisierten biologischen Matrizes könnten in Zukunft ideale Herzklappen und Gefäße hergestellt werden. Die Matrix dient als Gerüst auf dem sich körpereigene Zellen entweder in vitro in einem Bioreaktor oder nach Implantation in vivo zu vaskulärem oder Herzklappengewebe entwickeln können. Die Matrix wird bei der Entstehung des neuen vitalen Gewebes entweder hydrolisiert oder metabolisiert. Diese Übersichtsarbeit fasst die aktuellen experimentellen und klinischen Konzepte zusammen.

Abstract

Current prosthetic substitutes for heart valves and blood vessels have numerous limitations such as limited durability (biological valves), susceptibility to infection, the necessity of lifelong anticoagulation therapy (prosthetic valves), and reduced patency in small-caliber grafts, for example. Tissue engineering using either polymers or decellularised native allogeneic or xenogenic heart valve/vascular matrices may provide the techniques to develop the ideal heart valve or vascular graft. The matrix scaffold serves as a basis on which seeded cells can organise and develop into the valve or vascular tissue prior to or following implantation. The scaffold is either degraded or metabolised during the formation and organisation of the newly generated matrix, leading to vital living tissue. This paper summarises current research and first clinical developments in the tissue engineering of heart valves and vascular grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Notes

  1. Die kranke Aortenklappe des Patienten wird durch die körpereigene Pulmonalklappe ersetzt. An deren Position wird der – ggf. dezellularisierte – Homograft implantiert.

Literatur

  1. Richtlinie 2004/23/EG des Europäischen Parlaments und des Rates vom 31.03.2004 zur Festlegung von Qualitäts- und Sicherheitsstandards für die Spende, Beschaffung, Testung, Verarbeitung, Konservierung, Lagerung und Verteilung von menschlichen Geweben und Zellen (2004) In: Amtsblatt der Europäischen Union

  2. Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G, Haverich A (1998) Tissue engineering of heart valves--human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 14:279–284

    Google Scholar 

  3. Bader A, Steinhoff G, Strobl K et al. (2000) Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 70:7–14

    Google Scholar 

  4. Barratt-Boyes BG (1965) A method for preparing and inserting a homograft aortic valve. B J Surg 52:847–856

    Google Scholar 

  5. Bechtel JFM, Schmidtke C, Mueller-Steinhardt M, Brunswik A, Stierle U, Sievers HH (2003) Evaluation of a decellularized homograft valve for reconstruction of the right ventricular outflow tract in the Ross-procedure. In: Second Biennal Meeting of the Society for Heart Valve Disease; 28.06.2003–01.07.2003; Palais des Congres — Porte Maillot, Paris, France, p 347

  6. Bengtsson LA, Phillips R, Haegerstrand AN (1995) In vitro endothelialization of photooxidatively stabilized xenogeneic pericardium. Ann Thorac Surg 60:S365–368

    Google Scholar 

  7. Berglund JD, Mohseni MN, Nerem RM, Sambanis A (2003) Abiological hybrid model for collagen-based tissue engineered vascular constructs. Biomaterials 24:1241–1254

    Google Scholar 

  8. Bertipaglia B, Ortolani F, Petrelli L et al. (2003) Cell characterization of porcine aortic valve and decellularized leaflets repopulated with aortic valve interstitial cells. the VESALIO project (Vitalitate exornatum succedaneum aorticum laboringenioso obitenibitur). Ann Thorac Surg 75:1274–1282

    Google Scholar 

  9. Booth C, Korossis SA, Wilcox HE, Watterson KG, Kearney JN, Fisher J, Ingham E (2002) Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis 11:457–462

    Google Scholar 

  10. Boyer M, Townsend LE, Vogel LM et al. (2000) Isolation of endothelial cells and their progenitor cells from human peripheral blood. J Vasc Surg 31:181–189

    Google Scholar 

  11. Carrier RL, Papadaki M, Rupnick M et al. (1999) Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng 64:580–589

    Google Scholar 

  12. Cebotari S, Mertsching H, Kallenbach K et al. (2002) Construction of autologous human heart valves based on an acellular allograft matrix. Circulation 106 [Suppl 1]:I63–I68

  13. Chue WL, Campbell GR, Caplicen et al. (2004) Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. J Vasc Surg 39:859–867

    Google Scholar 

  14. Clarke DR, Lust RM, Sun YS, Black KS, Ollerenshaw JD (2001) Transformation of nonvascular acellular tissue matrices into durable vascular conduits. Ann Thorac Surg 71:S433–S436

    Google Scholar 

  15. Daly CD, Campbell GR, Walker PJ, Campbell JH (2004) In vivo engineering of blood vessels. Front Biosci 9:1915–1924

    Google Scholar 

  16. Davies MG, Hagen PO (1993) The vascular endothelium. Ann Surg 218:593–609

    Google Scholar 

  17. Deutsch M, Meinhart J, Fischlein T, Preiss P, Zilla P (1999) Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience. Surgery 126:847–855

    Google Scholar 

  18. Dohmen PM, Ozaki S, Verbeken E, Yperman J, Flameng W, Konertz WF (2002) Tissue engineering of an auto-xenograft pulmonary heart valve. Asian Cardiovasc Thoracic Ann 10:25–30

    Google Scholar 

  19. Edelman ER (1999) Vascular tissue engineering—designer arteries. Circ Res 85:1115–1117

    Google Scholar 

  20. Fischlein T, Fasol R (1996) In vitro endothelialization of bioprosthetic heart valves. J Heart Valve Dis 5:58–65

    Google Scholar 

  21. Fujisato Y, Numata S, Niwaya K, Kishida A, Yamada K, Nakatani T, Kitamura S (2003) In vitro endothelial cell seeding and expansion on 3d decellulariszed valve scaffold. In: The Society of Heart Valve Disease, Second biennal meeting; 28.06.2003–01.07.2003; Palais des Congres — Porte Maillot, Paris, France, p 84

  22. Galbusera M, Zoja C, Donadelli R et al. (1997) Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood 90:1558–1564

    Google Scholar 

  23. Galletti PM, Aebischer P, Sasken HF, Goddard MB, Chiu TH (1988) Experience with fully bioresorbable aortic grafts in the dog. Surgery 103:231–241

    Google Scholar 

  24. Girton TS, Oegema TR, Grassl ED, Isenberg BC, Tranquillo RT (2000) Mechanisms of stiffening and strengthening in media-equivalents fabricate using glycation. J Biomech Eng 122:216–223

    Google Scholar 

  25. Greisler HP, Endean ED, Klosak JJ, Ellinger J, Dennis JW, Buttle K, Kim DU (1988) Polyglactin 910/polydioxanone bicomponent totally resorbable vascular prostheses. J Vasc Surg 7:697–705

    Google Scholar 

  26. Greisler HP, Kim DU, Dennis JW et al. (1987) Compound polyglactin 910/polypropylene small vessel prostheses. J Vasc Surg 5:572–583

    Google Scholar 

  27. Gulbins H, Goldemund A, Uhlig A, Pritisanac A, Meiser B, Reichart B (2003) Implantation of an autologously endothelialized homograft. J Thorac Cardiovasc Surg 126:890–891

    Google Scholar 

  28. Gulbins H, Kilian E, Roth S, Uhlig A, Kreuzer E, Reichart B (2002) Is there an advantage in using homografts in patients with acute infective endocarditis of the aortic valve? J Heart Valve Dis 11:492–497

    Google Scholar 

  29. Hoerstrup SP, Sodian R, Daebritz S et al. (2000) Functional living trileaflet heart valves grown In vitro. Circulation 102:III44–49

    Google Scholar 

  30. Hoerstrup SP, Sodian R, Sperling JS, Vacanti JP, Mayer JE Jr (2000) New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng 6:75–79

    Google Scholar 

  31. Hoerstrup SP, Zund G, Sodian R, Schnell AM, Grunenfelder J, Turina MI (2001) Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg 20:164–169

    Google Scholar 

  32. Jarrell BE, Williams SK, Rose D, Garibaldi D, Talbot C, Kapelan B (1991) Optimization of human endothelial cell attachment to vascular graft polymers. J Biomech Eng 113:120–122

    Google Scholar 

  33. Kadletz M, Magometschnigg H, Minar E, Konig G, Grabenwoger M, Grimm M, Wolner E (1992) Implantation of in vitro endothelialized polytetrafluoroethylene grafts in human beings. A preliminary report. J Thorac Cardiovasc Surg 104:736–742

    Google Scholar 

  34. Kadletz M, Moser R, Preiss P, Deutsch M, Zilla P, Fasol R (1987) In vitro lining of fibronectin coated PTFE grafts with cryopreserved saphenous vein endothelial cells. Thorac Cardiovasc Surg 35 (Spec No 2):143–147

    Google Scholar 

  35. Kaiser D, Freyberg MA, Schrimpf G, Friedl P (1999) Apoptosis induced by lack of hemodynamic forces is a general endothelial feature even occuring in immortalized cell lines. Endothelium 6:325–334

    Google Scholar 

  36. Kalmar P, Irrgang E (2003) Cardiac Surgery in Germany during 2002: A report by the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg 51:25–29

    Google Scholar 

  37. Koller MR, Papoutsakis ET (1995) Cell adhesion in animal cell culture: physiological and fluid-mechanical implications. Bioprocess Technol 20:61–110

    Google Scholar 

  38. L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA (1998) A completely biological tissue-engineered human blood vessel. FASEB J 12:47–56

    Google Scholar 

  39. Lalka SG, Oelker LM, Malone JM et al. (1989) Acellular vascular matrix: a natural endothelial cell substrate. Ann Vasc Surg 3:108–117

    Google Scholar 

  40. Lantz GC, Badylak SF, Hiles MC et al. (1993) Small intestinal submucosa as a vascular graft: a review. J Invest Surg 6:297–310

    Google Scholar 

  41. Laube HR, Duwe J, Rutsch W, Konertz W (2000) Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J Thoracic Cardiovasc Surg 120:134–141

    Google Scholar 

  42. Lehner G, Fischlein T, Baretton G, Murphy JG, Reichart B (1997) Endothelialized biological heart valve prostheses in the non-human primate model. Eur J Cardiothorac Surg 11:498–504

    Google Scholar 

  43. Leyh RG, Wilhelmi M, Rebe P, Fischer S, Kofidis T, Haverich A, Mertsching H (2003) In vivo repopulation of xenogenic and allogenic acellular valve matrix conduits in the pulmonary circulation. Ann Thorac Surg 75:1457–1463

    Google Scholar 

  44. Loose R, Schultze-Rhonhof U, Sievers HH, Bernhard A (1993) Preparing heart valve allografts for endothelial cell seeding. Transplant Proc 25:3244–3246

    Google Scholar 

  45. Malone JM, Brendel K, Duhamel RC, Reinert RL (1984) Detergent-extracted small-diameter vascular prostheses. J Vasc Surg 1:181–191

    Google Scholar 

  46. Martin U, Winkler ME, Id M et al. (2000) Productive infection of primary human endothelial cells by pig endogenous retrovirus (PERV). Xenotransplantation 7:138–142

    Google Scholar 

  47. Matsuda T, Miwa H (1995) A hybrid vascular model biomimicking the hirarchic structure of arterial wall: neointimal stability and neoarterial regeneration process under arterial circulation. J Thoracic Cardiovasc Surg 110:988–997

    Google Scholar 

  48. Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shinoka T (2003) Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 24:2303–2308

    Google Scholar 

  49. Mazzucotelli JP, Moczar M, Zede L, Bambang LS, Loisance D (1994) Human vascular endothelial cells on expanded PTFE precoated with an engineered protein adhesion factor. Int J Artif Organs 17:112–117

    Google Scholar 

  50. Meng X, Mavromatis K, Galis ZS (1999) Mechanical stretching of human saphenous vein grafts induces expression and activation of matrix-degrading enzymes associated with vascular tissue injury and repair. Exp Mol Pathol 66:227–237

    Google Scholar 

  51. Miyata T, Conte MS, Trudell LA, Mason D, Whittemore AD, Birinyi LK (1991) Delayed exposure to pulsatile shear stress improves retention of human saphenous vein endothelial cells on seeded ePTFE grafts. J Surg Res 50:485–493

    Google Scholar 

  52. Nerem RM (2003) Role and mechanisms in vascular tissue engineering. Biorhology 40:281–364

    Google Scholar 

  53. Niklason LE, Abbott W, Gao J et al. (2001) Morphologic and mechanical characteristics of engineered bovine arteries. J Vasc Surg 33:628–638

    Google Scholar 

  54. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493

    Google Scholar 

  55. Niklason LE, Langer RS (1997) Advances in tissue engineering of blood vessels and other tissues. Transpl Immunol 5:303–306

    Google Scholar 

  56. O’Brien MF, Goldstein S, Walsh S, Black KS, Elkins R, Clarke D (1999) The SynerGraft valve: a new acellular (nonglutaraldehyde-fixed) tissue heart valve for autologous recellularization first experimental studies before clinical implantation. Semin Thorac Cardiovasc Surg 11:194–200

    Google Scholar 

  57. Opitz F, Schenke-layland K, Richter W, Martin DP, Degenkolbe I, Wahlers T, Stock UA (2004) Tissue engineering of ovine aortic blood vessel substitutes using applied shear stress and enzymatically derived vascular smooth muscle cells. Ann Biomed Eng 32:212–222

    Google Scholar 

  58. Pachence JM, Kohn J (1997) Biodegradable polymers for tissue engineering. In: Lanza RP, Langer R, Chick WP (eds) Principles of tissue engineering. Landes, Georgetown Texas USA, p 273–293

  59. Pavcnik D, Uchida BT, Timmermans HA et al. (2002) Percutaneous bioprosthetic venous valve: A long-term study in sheep. J Vasc Surg 35:598–602

    Google Scholar 

  60. Pierschbacher MD, Polarek JW, Craig WS, Tschopp JF, Sipes NJ, Harper JR (1994) Manipulation of cellular interactions with biomaterials toward a therapeutic outcome: a perspective. J Cell Biochem 56:150–154

    Google Scholar 

  61. Ratto GB, Romano P, Truini M, Frascio M, Rovida S, Badini A, Zaccheo D (1991) Glutaraldehyde-tanned mandril-grown grafts as venous substitutes. J Thorac Cardiovasc Surg 102:440–447

    Google Scholar 

  62. Robotin-Johnson MC, Swanson PE, Johnson DC, Schuessler RB, Cox JL (1998) An experimental model of small intestinal submucosa as a growing vascular graft. J Thorac Cardiovasc Surg 116:805–811

    Google Scholar 

  63. Rosenberg N, Martinez A, Sawyer PN, Wesolowsky SA, Postlethwait RW, Dillon ML (1966) Tanned collagen arterial prosthesis of bovine carotid origin in man. Ann Surg 164:247

    Google Scholar 

  64. Ross D (1967) Homograft replacement of the aortic valve. B J Surg 54:842–843

    Google Scholar 

  65. Ross DN (1998) Options for right ventricular outflow tract reconstruction. J Card Surg 13:186–189

    Google Scholar 

  66. Schaner PJ, Martin ND, Tulenko TN et al. (2004) Decellularized veinas a potential scaffold for vascular tissue engineering. J Vasc Surg 40:146–153

    Google Scholar 

  67. Schenke-Layland K, Vasilevski O et al. (2003) Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 143:201–208

    Google Scholar 

  68. Schmidt CE, Baier JM (2000) Acellular vascular tissues: natural biomaterials for tissue repair and tissue engineering. Biomaterials 21:2215–2231

    Google Scholar 

  69. Schmidt SP, Hunter TJ, Sharp WV, Malindzak GS, Evancho MM (1984) Endothelial cell-seeded four-millimeter Dacron vascular grafts: effects of blood flow manipulation through the grafts. J Vasc Surg 1:434–441

    Google Scholar 

  70. Seifalian AM, Salacinski HJ, Tiwari A, Edwards A, Bowald S, Hamilton G (2003) In vivo biostability of a poly(carbonate-urea)urethane graft. Biomaterials 24:2549–2557

    Google Scholar 

  71. Seifalian AM, Tiwari A, Hamilton G, Salacinski HJ (2002) Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs 26:307–320

    Google Scholar 

  72. Shen G, Tsung HC, Wu CF et al. (2003) Tissue engineering of blood vessels with endothelial cells differentiated from mouse embrionic stem cells. Cell Res 13:335–341

    Google Scholar 

  73. Shinoka T (2002) Tisue engineered heart valves: autologous cell seeding on biodegradable polymer scaffold. Artif Organs 26:402–406

    Google Scholar 

  74. Shinoka T, Breuer CK, Tanel RE et al. (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60: S513–516

    Google Scholar 

  75. Shinoka T, Shum-Tim D, Ma PX et al. (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115:536–545; discussion 545–536

    Google Scholar 

  76. Shirota T, He H, Yasui H, Matsuda T (2003) Human endothelial progenitor cell-seeded hybrid graft. Proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue Eng 9:127–136

    Google Scholar 

  77. Shum-Tim D, Stock U, Hrkach J et al. (1999) Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 68:2298–2304

    Google Scholar 

  78. Simon P, Kasimir MT, Seebacher G et al. (2003) Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg 23:1002–1006

    Google Scholar 

  79. Sipehia R, Martucci G, Lipscombe J (1996) Transplantation of human endothelial cell monolayer on artificial vascular prosthesis: the effect of growth-support surface chemistry, cell seeding density, ECM protein coating, and growth factors. Artif Cells Blood Substit Immobil Biotechnol 24:51–63

    Google Scholar 

  80. Skalak R, Fox C (1988) Tissue Engineering. In: Skalak R, Fox C (eds) Workshop on Tissue Engineering; 1988 26.–29.02.1988; Granlibakken, Lake Tahoe, CA, USA: Liss, New York, NY, USA

  81. Sodian R, Hoerstrup SP, Sperling JS et al. (2000) Early In vivo experience with tissue-engineered trileaflet heart valves. Circulation 102:III22–29

    Google Scholar 

  82. Sparks CH (1973) Silicone mandril method for growing reinforced autogenous femoro-popliteal artery grafts in situ. Ann Surg 177:293–300

    Google Scholar 

  83. Steinhoff G, Stock U, Karim N et al. (2000) Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: In vivo restoration of valve tissue. Circulation 102:III50–55

    Google Scholar 

  84. Stock UA, Nagashima M, Khalil PN et al. (2000) Tissue-engineered valved conduits in the pulmonary circulation. J Thorac Cardiovasc Surg 119:732–740

    Google Scholar 

  85. Sung HW, Hsu CS, Chen HC, Hsu HL, Chang Y, Lu JH, Yang PC (1997) Fixation of various porcine arteries with an epoxy compound. Artif Organs 21:50–58

    Google Scholar 

  86. Tamura N, Nakamura T, Terai H, Iwakura A, Nomura S, Shimizu Y, Komeda M (2003) A new acellular vascular prosthesis as a scaffold for host tissue regeneration. Int J Artif Organs 26:783–792

    Google Scholar 

  87. Teebken OE, Bader A, Steinhoff G, Haverich A (1998) Ein neues Konzept für Ersatzmaterialien in der Gefäßchirurgie [A new concept for substitutes in vascular surgery]. Langenbecks Arch Chir Suppl Kongressbd 115:1256–1259

    Google Scholar 

  88. Teebken OE, Bader A, Steinhoff G, Haverich A (2000) Tissue engineering of vascular grafts: human cell seeding of decellularised porcine matrix. Eur J Vasc Endovasc Surg 19:381–386

    Google Scholar 

  89. Teebken OE, Haverich A (2002) Tissue Engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg 23:475–485

    Google Scholar 

  90. Teebken OE, Mertsching H, Haverich A (2002) Modification of heart valve allografts and xenografts by means of tissue engineering. Transplant Proc 34:2333

    Google Scholar 

  91. Teebken OE, Pichlmaier AM, Haverich A (2001) Cell seeded decellularised allogeneic matrix grafts and biodegradable polydioxanone-prostheses compared with arterial autografts in a porcine model. Eur J Vasc Endovasc Surg 22:139–145

    Google Scholar 

  92. Teebken OE, Puschmann C, Aper T, Haverich A, Mertsching H (2003) Tissue-engineered bioprosthetic venous valve: a long-term study in sheep. Eur J Vasc Endovasc Surg 25:305–312

    Google Scholar 

  93. Tiwari A, Salacinski H, Seifalian AM, Hamilton G (2002) New prostheses for use in bypass grafts with special emphasis on polyurethanes. Cardiovas Surg 10:191–197

    Google Scholar 

  94. Tiwari A, Salacinski HJ, Hamilton G, Seifalian AM (2001) Tissue engineering of vascular bypass grafts: role of endothelial cell extraction. Eur J Vasc Endovasc Surg 21:193–201

    Google Scholar 

  95. van Wachem PB, Stronck JW, Koers-Zuideveld R, Dijk F, Wildevuur CR (1990) Vacuum cell seeding: a new method for the fast application of an evenly distributed cell layer on porous vascular grafts. Biomaterials 11:602–606

    Google Scholar 

  96. Walluscheck KP, Steinhoff G, Haverich A (1996) Endothelial cell seeding of de-endothelialised human arteries: improvement by adhesion molecule induction and flow-seeding technology. Eur J Vasc Endovasc Surg 12:46–53

    Google Scholar 

  97. Walluscheck KP, Steinhoff G, Haverich A (1996) Endothelial cell seeding of native vascular surfaces. Eur J Vasc Endovasc Surg 11:290–303

    Google Scholar 

  98. Walluscheck KP, Steinhoff G, Kelm S, Haverich A (1996) Improved endothelial cell attachment on ePTFE vascular grafts pretreated with synthetic RGD-containing peptides. Eur J Vasc Endovasc Surg 12:321–330

    Google Scholar 

  99. Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400

    Google Scholar 

  100. Williams SK, Jarrell BE (1996) Tissue engineered vascular grafts. Nature Medicine 2:32–34

    Google Scholar 

  101. Wilson GJ, Courtman DW, Klement P, Lee JM, Yeger H (1995) Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg 60:S353–358

    Google Scholar 

  102. Wilson GJ, Yeger H, Klement P, Lee JM, Courtman DW (1990) Acellular matrix allograft small caliber vascular prostheses. ASIAO Transactions 36:M340-M343

    Google Scholar 

  103. Wu MHD, Shi Q, Wechezak AR, Clowes AW, Gordon IL, Sauvage LR (1995) Definitive proof of endothelialization of a Dacron arterial prosthesis in a human being. J Vasc Surg 21:862–867

    Google Scholar 

  104. Yacoub M, Rasmi NR, Sundt TM et al. (1995) Fourteen-year experience with homovital homografts for aortic valve replacement. J Thorac Cardiovasc Surg 110:186–193

    Google Scholar 

  105. Ye Q, Zund G, Jockenhoevel S, Hoerstrup SP, Schoeberlein A, Grunenfelder J, Turina M (2000) Tissue engineering in cardiovascular surgery: new approach to develop completely human autologous tissue. Eur J Cardiothorac Surg 17:449–454

    Google Scholar 

  106. Zund G, Breuer CK, Shinoka T, Ma PX, Langer R, Mayer JE, Vacanti JP (1997) The in vitro construction of a tissue engineered bioprosthetic heart valve. Eur J Cardiothorac Surg 11:493–497

    Google Scholar 

  107. Zund G, Hoerstrup SP, Schoeberlein A, Lachat M, Uhlschmid G, Vogt PR, Turina M (1998) Tissue engineering: a new approach in cardiovascular surgery: Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg 13:160–164

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Teebken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teebken, O.E., Wilhelmi, M. & Haverich, A. Tissue Engineering für Herzklappen und Gefäße. Chirurg 76, 453–466 (2005). https://doi.org/10.1007/s00104-005-1032-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-005-1032-z

Schlüsselwörter

Keywords

Navigation