Skip to main content
Log in

Funktioneller Gewebe- und Organersatz mit postnatalen Stammzellen

Technologische Grundlagen

Techniques for functional tissue and organ replacement using postnatal stem cells

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Stammzellen haben mit ihrer hohen Proliferationsaktivität und Plastizität das Potenzial, eine zentrale Funktion in zelltherapeutischen Therapieansätzen zu übernehmen. Wenngleich die Erforschung der grundlegenden zellbiologischen Prozesse in Stammzellen unabdingbar ist, so reicht dieses alleine jedoch nicht aus, um Stammzellen als Bestandteil des therapeutischen Spektrums zu etablieren. Hierzu ist parallel auch die Weiterentwicklung entsprechender Technologien notwendig. Diese umfasst sowohl die Etablierung von geeigneten Verfahren zur Gewinnung und Differenzierung der Stammzellen, als auch die Entwicklung von geeigneten Zellträgersystemen und Bioreaktoren zur Kultivierung und Expansion der Zellen. Darüber hinaus stellt der Aufbau einer Logistik für die Gewinnung, den Transport und die Lagerung von Stammzellen als Grundlage eines breiten therapeutischen Einsatzes eine große organisatorische und technische Herausforderung dar.

In vorliegendem Übersichtsartikel werden die derzeit etablierten Techniken für die Arbeit an und den Einsatz von postnatalen Stammzellen erläutert sowie Anforderungen für zukünftige technologische Entwicklungen formuliert.

Abstract

Postnatal stem cells play a decisive role in cell-based therapies due to their high proliferation activity and functional plasticity. On the one hand, basic research in cell biological processes of adult stem cells is crucial in order to establish them as therapeutic tools. On the other hand, development and enhancements of appropriate techniques are required: we need to establish defined technologies for extraction and differentiation of stem cells and to develop adequate cell carrier devices, scaffolds, and bioreactors for in vitro purposes. Furthermore, it is an interdisciplinary challenge to consider logistical aspects concerning isolation, transport, and storage of stem cells in order to use them in a wide range of activities in regenerative medicine. In this review we present the current methods of work and research on adult stem cells. We explain their therapeutic use and define requirements for future technological developments for work with postnatal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Notes

  1. STEMMAT ist ein Multi-Center-Projekt, in dem das Potenzial von Bestandteilen der Nabelschnur im Hinblick auf eine therapeutische Nutzung untersucht wird. STEMMAT wird vom Freistaat Bayern im Rahmen der Gesundheitsinitiative „BayernAktiv“ gefördert. STEMMAT-Partner: Zentralinstitut für Medizintechnik der TU München, Frauenklinik des Klinikums rechts der Isar, TU München, III. Medizinische Klinik des Klinikums rechts der Isar, TU München, Klinik für Herz-, Thorax- und herznahe Gefäßchirurgie (HTC) am Klinikum Regensburg, Blutspendedienst des Bayerischen Roten Kreuzes gGmbH.

  2. FORTEPRO: Ein von der bayerischen Forschungsstiftung gefördertes Projekt, in dem die Schwerpunkte Tissue Engineering von Knorpel und Knochen mit Verfahren der Rapid-Prototyping-Technik kombiniert werden (http://www.fortepro.de).

Literatur

  1. Ahmad I, Tang L, Pham H (2000) Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun 270:517–521

    Google Scholar 

  2. Alison MR, Vig P, Russo F et al. (2004) Hepatic stem cells: from inside and outside the liver? Cell Prolif 37:1–21

    Google Scholar 

  3. Bagley J, Rosenzweig M, Marks DF, Pykett MJ (1999) Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device. Exp Hematol 27:496–504

    Google Scholar 

  4. Banu N, Rosenzweig M, Kim H, Bagley J, Pykett M (2001) Cytokine-augmented culture of haematopoietic progenitor cells in a novel three-dimensional cell growth matrix. Cytokine 13:349–358

    Google Scholar 

  5. Brittan M, Wright NA (2002) Gastrointestinal stem cells. J Pathol 197:492–509

    Google Scholar 

  6. Cao Y, Rodriguez A, Vacanti M, Ibarra C, Arevalo C, Vacanti CA (1998) Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 9:475–487

    Google Scholar 

  7. Ceborare S, Lichtenberg A, Tudorache I et al. (2004) Clinical Application of Tissue Engineering Human Heart Valves. Leibniz Symposium on Transplantation and Regeneration of Thoracic Organs, Hannover, Germany

  8. Dillon GP, Yu X, Sridharan A, Ranieri JP, Bellamkonda RV (1998) The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym Ed 9:1049–1069

    Google Scholar 

  9. Eblenkamp M, Aigner J, Hintermair J et al. (2004) Umbilical cord stromal cells (UCSC). Cells featuring osteogenic differentiation potential. Orthopade

  10. Ehring B, Biber K, Upton TM, Plosky D, Pykett M, Rosenzweig M (2003) Expansion of HPCs from cord blood in a novel 3D matrix. Cytotherapy 5:490–499

    Google Scholar 

  11. Eisenberg LM, Eisenberg CA (2003) Stem cell plasticity, cell fusion, and transdifferentiation. Birth Defects Res Part C Embryo Today 69:209–218

    Google Scholar 

  12. Emura M (1997) Stem cells of the respiratory epithelium and their in vitro cultivation. In Vitro Cell Dev Biol Anim 33:3–14

    Google Scholar 

  13. Filshie RJ (2002) Cytokines in haemopoietic progenitor mobilisation for peripheral blood stem cell transplantation. Curr Pharm Des 8:379–394

    Google Scholar 

  14. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Google Scholar 

  15. Hirtenstein M, Clark J, Lindgren G, Vretblad P (1980) Microcarriers for animal cell culture: a brief review of theory and practice. Dev Biol Stand 46:109–116

    Google Scholar 

  16. Horwitz EM, Prockop DJ, Fitzpatrick LA et al. (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    Google Scholar 

  17. Hutmacher DW, Goh JC, Teoh SH (2001) An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singapore 30:183–191

    Google Scholar 

  18. Jaroma HJ, Ritsila VA (1988) Effect of diffusion chamber pore size on differentiation and proliferation of periosteal cells. An experimental study. Clin Orthop 258–264

  19. Kii I, Amizuka N, Shimomura J, Saga Y, Kudo A (2004) Cell-cell interaction mediated by cadherin-11 directly regulates the differentiation of mesenchymal cells into the cells of the osteo-lineage and the chondro-lineage. J Bone Miner Res 19:1840–1849

    Google Scholar 

  20. Kim HS, Lim JB, Min YH, Lee ST, Lyu CJ, Kim ES, Kim HO (2003) Ex vivo expansion of human umbilical cord blood CD34+ cells in a collagen bead-containing 3-dimensional culture system. Int J Hematol 78:126–132

    Google Scholar 

  21. Kruse C, Birth M, Rohwedel J, Assmuth K, Goepel A, Wedel T (2004) Pluripotency of adult stem cells derived from human and rat pancreas. Appl Phys A: Mat Sci Process 79 (7):1617–1624

    Google Scholar 

  22. Lamm P, Juchem G, Milz S, Schuffenhauer M, Reichart B (2001) Autologous endothelialized vein allograft: a solution in the search for small-caliber grafts in coronary artery bypass graft operations. Circulation 104:I108–114

    Google Scholar 

  23. Minuth WW, Kloth S, Aigner J, Sittinger M, Rockl W (1996) Approach to an organo-typical environment for cultured cells and tissues. Biotechniques 20:498–501

    Google Scholar 

  24. Mitchell KE, Weiss ML, Mitchell BM et al. (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21:50–60

    Google Scholar 

  25. Nikolai TJ, Hu WS (1992) Cultivation of mammalian cells on macroporous microcarriers. Enzyme Microb Technol 14:203–208

    Google Scholar 

  26. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y (2001) Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104:233–245

    Google Scholar 

  27. Palmer TD, Schwartz PH, Taupin P, Kaspar B, Stein SA, Gage FH (2001) Cell culture. Progenitor cells from human brain after death. Nature 411:42–43

    Google Scholar 

  28. Pittenger MF, Mackay AM, Beck SC et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Google Scholar 

  29. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    Google Scholar 

  30. Radice M, Brun P, Cortivo R, Scapinelli R, Battaliard C, Abatangelo G (2000) Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors. J Biomed Mater Res 50:101–109

    Google Scholar 

  31. Rocha V, Sanz G, Gluckman E (2004) Umbilical cord blood transplantation. Curr Opin Hematol 11:375–385

    Google Scholar 

  32. Romanov YA, Svintsitskaya VA, Smirnov VN (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21:105–110

    Google Scholar 

  33. Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE (2004) Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells. J Biomed Biotechnol 2004:24–34

    Google Scholar 

  34. Sarugaser R, Lickorish D, Davies J (2004) Human Umbilical Cord Whartons’s Jelly as a Source of Mesenchymal Progenitors Capable of Expressing a Functional Osteogenic Phenotype. 7th World Biomaterials Congress, Sydney

  35. Schrimpf G, Friedl P (1993) Growth of human vascular endothelial cells on various types of microcarriers. Cytotechnology 13:203–211

    Google Scholar 

  36. Schultheiss D, Gabouev AI, Cebotari S et al. (2005) Biological Vascularized Matrix for Bladder Tissue Engineering: Matrix Preparation, Reseeding Technique and Short-Term Implantation in a Porcine Model. J Urol 173:276–280

    Google Scholar 

  37. Slack JM, Tosh D (2001) Transdifferentiation and metaplasia--switching cell types. Curr Opin Genet Dev 11:581–586

    Google Scholar 

  38. Solchaga LA, Gao J, Dennis JE, Awadallah A, Lundberg M, Caplan AI, Goldberg VM (2002) Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng 8:333–347

    Google Scholar 

  39. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784

    Google Scholar 

  40. Wintermantel E, Ha S (2002) Medizintechnik mit biokompatiblen Werkstoffen und Verfahren. Springer, Berlin Heidelberg New York

  41. Wollert KC, Meyer GP, Lotz J et al. (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    Google Scholar 

  42. Wu QF, Wu CT, Dong B, Wang LS (2003) Cultivation of human mesenchymal stem cells on macroporous CultiSpher G microcarriers. Zhongguo Shi Yan Xue Ye Xue Za Zhi 11:15–21

    Google Scholar 

  43. Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572

    Google Scholar 

  44. Zuk PA, Zhu M, Ashjian P et al. (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Wintermantel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aigner, J., Eblenkamp, M. & Wintermantel, E. Funktioneller Gewebe- und Organersatz mit postnatalen Stammzellen. Chirurg 76, 435–444 (2005). https://doi.org/10.1007/s00104-005-1008-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-005-1008-z

Schlüsselwörter

Keywords

Navigation