Skip to main content

Advertisement

Log in

Genetik primärer Kopfschmerzen

Genetics of primary headache syndromes

  • Leitthema
  • Published:
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz Aims and scope

Zusammenfassung

Die Migräne hat eine erhebliche genetische Komponente. Klassischer Vertreter monogener Migräneformen ist die familiäre hemiplegische Migräne, für die bisher 3 ursächliche, von Mutationen betroffene Gene identifiziert wurden; Arbeiten an transgenen Tiermodellen haben entscheidend zu einem besseren Verständnis der molekularen Pathophysiologie dieser monogenen Modellerkrankung, aber auch der Migräne insgesamt beigetragen. Daneben existieren auch andere (seltenere) monogene Migräne-Formen, z. B. im Rahmen hereditärer meist vaskulärer Syndrome, wie z. B. CADASIL. Auf der anderen Seite stehen die häufigen Migräneformen, die genetisch komplex sind. In diesem Bereich wurden in den letzten wenigen Jahren durch große genomweite Assoziationsstudien die ersten robusten genetischen Risikofaktoren identifiziert, wobei sich das Feld dynamisch weiterentwickelt. Die vorliegende Überblicksarbeit stellt den aktuellen Wissensstand zur Migränegenetik dar; Schwerpunkte bilden die Themen hemiplegische Migräne und die jüngsten Ergebnisse zu den häufigen Migräneformen. Als Ausblick werden auch präliminäre Befunde zur Genetik anderer primärer Kopfschmerzerkrankungen wie Clusterkopfschmerz oder Spannungskopfschmerz besprochen.

Abstract

Migraine has an important genetic component. The prototypic monogenic form of migraine is hemiplegic migraine, a rare subtype of migraine with aura, for which three causative genes have been identified. Studies of transgenic animal models have substantially improved our understanding of the molecular pathophysiology of this monogenic model disease as well as of migraine in general. Beyond this, there are other (rarer) monogenic forms of migraine, e.g., in the context of hereditary mostly vascular syndromes such as CADASIL. By contrast, the common types of migraine with and without aura are genetically complex. With the identification of the first robust genetic risk variants in large genome-wide association studies, our knowledge in this still dynamically expanding field has substantially increased. This review summarizes the current status of migraine genetics, with a special focus on hemiplegic migraine as well as the most recent findings in complex migraine genetics. In addition, the first preliminary findings on the genetics of other types of primary headache disorders (cluster headache, tension-type headache) are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Gervil M, Ulrich V, Kyvik KO, Olesen J, Russell MBR (1999) Migraine without aura: a population-based twin study. Ann Neurol 46(4):606–611

    Article  CAS  PubMed  Google Scholar 

  2. Ulrich VV, Gervil MM, Kyvik KOK, Olesen JJ, Russell MBM (1999) Evidence of a genetic factor in migraine with aura: a population-based Danish twin study. Ann Neurol 45(2):242–246

    Article  CAS  PubMed  Google Scholar 

  3. Russell MB, Olesen J (1995) Increased familial risk and evidence of genetic factor in migraine. BMJ 311(7004):541–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Mulder EJE, Van Baal CC, Gaist DD et al (2003) Genetic and environmental influences on migraine: a twin study across six countries. Twin Res 6(5):422–431

    Article  PubMed  Google Scholar 

  5. Headache Classification Committee of the International Headache Society (IHS) (2013) The international classification of headache disorders, 3rd edition (beta version). Cephalalgia 33(9):629–808

    Article  Google Scholar 

  6. Ducros A, Denier C, Joutel A et al (2001) The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 345(1):17–24

    Article  CAS  PubMed  Google Scholar 

  7. Russell MB, Ducros A (2011) Sporadic and familial hemiplegic migraine: pathophysiological mechanisms, clinical characteristics, diagnosis, and management. Lancet Neurol 10(5):14–44

    Article  Google Scholar 

  8. Haan JJ, Terwindt GMG, Ophoff RAR et al (1995) Is familial hemiplegic migraine a hereditary form of basilar migraine? Cephalalgia 15(6):477–481

    Article  CAS  PubMed  Google Scholar 

  9. Freilinger T, Bohe M, Wegener B, Muller-Myhsok B, Dichgans M, Knoblauch H (2008) Expansion of the phenotypic spectrum of the CACNA1A T666M mutation: a family with familial hemiplegic migraine type 1, cerebellar atrophy and mental retardation. Cephalalgia 28(4):403–407

    Article  CAS  PubMed  Google Scholar 

  10. Freilinger T, Ackl N, Ebert A et al (2011) A novel mutation in CACNA1A associated with hemiplegic migraine, cerebellar dysfunction and late-onset cognitive decline. J Neurol Sci 300(1–2):160–163

    Article  CAS  PubMed  Google Scholar 

  11. Thomsen LL, Olesen J, Russell MB (2003) Increased risk of migraine with typical aura in probands with familial hemiplegic migraine and their relatives. Eur J Neurol 10(4):421–427

    Article  CAS  PubMed  Google Scholar 

  12. Ophoff RAR, Terwindt GMG, Vergouwe MNM et al (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87(3):543–552

    Article  CAS  PubMed  Google Scholar 

  13. Fusco MD, Marconi R, Silvestri L et al (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump α2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33(2):192–196

    Article  PubMed  Google Scholar 

  14. Tavraz NN, Friedrich T, Durr KL et al (2008) Diverse functional consequences of mutations in the Na+/K+-ATPase 2-subunit causing familial hemiplegic migraine type 2. J Biol Chem 283(45):31097–31106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Dichgans M, Freilinger T, Eckstein G et al (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366(9483):371–377

    Article  CAS  PubMed  Google Scholar 

  16. Kahlig KM, Rhodes TH, Pusch M et al (2008) Divergent sodium channel defects in familial hemiplegic migraine. Proc Natl Acad Sci U S A 105(28):9799–9804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Cestèle S, Schiavon E, Rusconi R et al (2013) Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects. Proc Natl Acad Sci U S A 110(43):17546–17551. doi:10.1073/pnas.1309827110

  18. Thomsen LL, Kirchmann M, Bjornsson A et al (2007) The genetic spectrum of a population-based sample of familial hemiplegic migraine. Brain 130(2):346–356

    Article  CAS  PubMed  Google Scholar 

  19. Spadaro M, Ursu S, Lehmann-Horn F et al (2004) A G301R Na+/K+-ATPase mutation causes familial hemiplegic migraine type 2 with cerebellar signs. Neurogenetics 5(3):177–185

    Article  CAS  PubMed  Google Scholar 

  20. Kors EEE, Terwindt GMG, Vermeulen FLF et al (2001) Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann Neurol 49(6):753–760

    Article  CAS  PubMed  Google Scholar 

  21. Freilinger T, Peters N, Rémi J et al (2009) A case of Sturge-Weber syndrome with symptomatic hemiplegic migraine: clinical and multimodality imaging data during a prolonged attack. J Neurol Sci 287(1–2):271–274

    Article  PubMed  Google Scholar 

  22. de Vries B, Freilinger, Vanmolkot KRJ et al (2007) Systematic analysis of three FHM genes in 39 sporadic patients with hemiplegic migraine. Neurology 69(23):2170–2176

    Article  PubMed  Google Scholar 

  23. Riant F, Ducros A, Ploton C, Barbance C, Depienne C, Tournier-Lasserve E (2010) De novo mutations in ATP1A2 and CACNA1A are frequent in early-onset sporadic hemiplegic migraine. Neurology 75(11):967–972

    Article  CAS  PubMed  Google Scholar 

  24. Stam AH, Louter MA, Haan J et al (2011) A long-term follow-up study of 18 patients with sporadic hemiplegic migraine. Cephalalgia 31(2):199–205

    Article  PubMed  Google Scholar 

  25. Suzuki M, Van Paesschen W, Stalmans I et al (2010) Defective membrane expression of the Na(+)-HCO(3)(-) cotransporter NBCe1 is associated with familial migraine. Proc Natl Acad Sci U S A 107(36):15963–15968

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Riant F, Roze E, Barbance C et al (2012) PRRT2 mutations cause hemiplegic migraine. Neurology 79(21):2122–2124

    Article  CAS  PubMed  Google Scholar 

  27. Moskowitz MAM, Bolay HH, Dalkara TT (2004) Deciphering migraine mechanisms: clues from familial hemiplegic migraine genotypes. Ann Neurol 55(2):276–280

    Article  CAS  PubMed  Google Scholar 

  28. van den Maagdenberg AMJM, Pietrobon D, Pizzorusso T et al (2004) A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron 41(5):701–710

    Article  PubMed  Google Scholar 

  29. van den Maagdenberg AMJM, Pizzorusso T, Kaja S et al (2010) High cortical spreading depression susceptibility and migraine-associated symptoms in Ca v2.1 S218L mice. Ann Neurol 67(1):85–98

    Article  PubMed  Google Scholar 

  30. Tottene A, Conti R, Fabbro A et al (2009) Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in CaV2.1 knockin migraine mice. Neuron 61(5):762–773

    Article  CAS  PubMed  Google Scholar 

  31. Eikermann-Haerter K, Yuzawa I, Qin T et al (2011) Enhanced subcortical spreading depression in familial hemiplegic migraine type 1 mutant mice. J Neurosci 31(15):5755–5763

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Eikermann-Haerter K, Lee JH, Yuzawa I et al (2012) Migraine mutations increase stroke vulnerability by facilitating ischemic depolarizations. Circulation 125(2):335–345

    Article  PubMed Central  PubMed  Google Scholar 

  33. Leo L, Gherardini L, Barone V et al (2011) Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet 7(6):e1002129–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Martin MS, Dutt K, Papale LA et al (2010) Altered function of the SCN1A voltage-gated sodium channel leads to -aminobutyric acid-ergic (GABAergic) interneuron abnormalities. J Biol Chem 285(13):9823–9834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhuchenko O, Bailey J, Bonnen P et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat Genet 15(1):62–69

    Article  CAS  PubMed  Google Scholar 

  36. Swoboda KJ, Kanavakis E, Xaidara A et al (2004) Alternating hemiplegia of childhood or familial hemiplegic migraine?: A novelATP1A2 mutation. Ann Neurol 55(6):884–887

    Article  CAS  PubMed  Google Scholar 

  37. Vanmolkot K, Kors EE, Hottenga JJ et al (2003) Novel mutations in the Na+, K+ ATPase pump gene ATP1A2 associated with familial hemiplegic migraine and benign familial infantile convulsions. Ann Neurol 54(3):360–366

    Article  CAS  PubMed  Google Scholar 

  38. Escayg AA, MacDonald BTB, Meisler MHM et al (2000) Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 24(4):343–345

    Article  CAS  PubMed  Google Scholar 

  39. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P (2001) De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 68(6):1327–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Vahedi K, Depienne C, Le Fort D et al (2009) Elicited repetitive daily blindness: a new phenotype associated with hemiplegic migraine and SCN1A mutations. Neurology 72(13):1178–1183

    Article  CAS  PubMed  Google Scholar 

  41. Todt U, Dichgans M, Jurkat-Rott K et al (2005) Rare missense variants in ATP1A2 in families with clustering of common forms of migraine. Hum Mutat 26(4):315–321

    Article  CAS  PubMed  Google Scholar 

  42. Lafrenière RGR, Cader MZM, Poulin J-FJ et al (2010) A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med 16(10):1157–1160

    Article  PubMed  Google Scholar 

  43. Vahedi K, Chabriat H, Levy C, Joutel A, Tournier-Lasserve E, Bousser M-G (2004) Migraine with aura and brain magnetic resonance imaging abnormalities in patients with CADASIL. Arch Neurol 61(8):1237–1240

    Article  PubMed  Google Scholar 

  44. Richards A, van den Maagdenberg AMJM, Jen JC et al (2007) C-terminal truncations in human 3′–5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39(9):1068–1070

    Article  CAS  PubMed  Google Scholar 

  45. Freilinger T, Dichgans M (2006) Genetik der Migräne. Nervenarzt 77(10):1186–1195

    Article  CAS  PubMed  Google Scholar 

  46. Polvi A, Siren A, Kallela M et al (2012) Shared loci for migraine and epilepsy on chromosomes 14q12–q23 and 12q24.2–q24.3. Neurology 78(3):202–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Freilinger TM (2012) Genetics of migraine: an update. Future Neurol 7(5):613–626

    Article  CAS  Google Scholar 

  48. Nyholt DR, LaForge KS, Kallela M et al (2008) A high-density association screen of 155 ion transport genes for involvement with common migraine. Hum Mol Genet 17(21):3318–3331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Anttila V, Stefansson H, Kallela M et al (2010) Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet 42(10):869–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Chasman DI, Schürks M, Anttila V et al (2011) Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet 43(7):695–698

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Freilinger T, Anttila V, de Vries B et al (2012) Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet 44(7):777–782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Anttila V, Winsvold BS, Gormley P et al (2013) Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet 45(8):912–917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Bjørn Russell M (2004) Epidemiology and genetics of cluster headache. Lancet Neurol 3(5):279–283

    Article  Google Scholar 

  54. Schürks M (2010) Genetics of cluster headache. Curr Pain Headache Rep 14(2):132–139

    Article  PubMed  Google Scholar 

  55. Rainero I, Rubino E, Valfrè W et al (2007) Association between the G1246A polymorphism of the hypocretin receptor 2 gene and cluster headache: a meta-analysis. J Headache Pain 8(3):152–156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Russell MB (2007) Genetics of tension-type headache. J Headache Pain 8(2):71–76

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt

T. Freilinger gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Freilinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freilinger, T. Genetik primärer Kopfschmerzen. Bundesgesundheitsbl. 57, 919–927 (2014). https://doi.org/10.1007/s00103-014-1998-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00103-014-1998-0

Schlüsselwörter

Keywords

Navigation