Skip to main content
Log in

Phosphodiesterase-4-Inhibition zur Therapie der endothelialen Schranken- und Mikrozirkulationsstörung in der Sepsis

Phosphodiesterase 4 inhibition for treatment of endothelial barrier and microcirculation disorders in sepsis

  • Intensivmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die Sepsis wird typischerweise durch eine Störung der endothelialen Barrierefunktion („capillary leak“) und eine Mikrozirkulationsstörung begleitet. Diese münden in ein Organversagen. Da es sich bei diesen Ereignissen um entscheidende und prognosebestimmende Vorgänge bei septischen Entzündungsprozessen handelt, wäre die spezifische Therapie sowohl der endothelialen Schrankenstörung als auch der Mikrozirkulationsstörung von größter Bedeutung. Zahlreiche Arbeiten aus der Grundlagenforschung haben in den letzten Jahren erheblich zum verbesserten Verständnis der Pathophysiologie dieser Prozesse beigetragen. Ein vielversprechender therapeutischer Ansatz zur Verbesserung der endothelialen Schrankenstörung und der Mikrozirkulationsstörungen scheint die Modulation der verminderten Aktivität der Rho-GTPase Rac1 durch Stabilisierung intraendothelialer cAMP-Spiegel (zyklisches Adenosinmonophosphat), z. B. durch Applikation von Phosphodiesterase-4-Hemmern, zu sein. Die bisherigen tierexperimentellen Ansätze und die Erkenntnisse über die zellulären Mechanismen der letzten Jahre sollen hier vorgestellt und diskutiert werden.

Abstract

Sepsis is commonly associated with loss of microvascular endothelial barrier function (capillary leak) and dysfunctional microcirculation, which both promote organ failure. The development of a distinct therapy of impaired endothelial barrier function and disturbed microcirculation is highly relevant because both of these phenomena constitute crucial processes which critically influence the prognosis of patients. Numerous in vivo and in vitro trials over the past years have fostered a better understanding of the pathophysiology of capillary leak. Furthermore, promising data in animal models show that therapeutic modulation of endothelial barrier function and microcirculation can be achieved by stabilizing endothelial cAMP (cyclic adenosine monophosphate) levels followed by activation of Rho-GTPase Rac1, e. g. by phosphodiesterase 4 inhibitors. This review summarizes and discusses recent findings of cellular mechanisms and in vivo trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Adamson RH, Sarai RK, Clark JF et al (2012) Attenuation by sphingosine-1-phosphate of rat microvessel acute permeability response to bradykinin is rapidly reversible. Am J Physiol Heart Circ Physiol 302:H1929–35. doi:10.1152/ajpheart.00614.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aird WC (2003) The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101:3765–3777. doi:10.1182/blood-2002-06-1887

    Article  CAS  PubMed  Google Scholar 

  3. Ait-Oufella H, Maury E, Lehoux S et al (2010) The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Med 36:1286–1298. doi:10.1007/s00134-010-1893-6

    Article  CAS  PubMed  Google Scholar 

  4. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520. doi:10.1124/pr.58.3.5

    Article  CAS  PubMed  Google Scholar 

  5. Bielekova B, Richert N, Howard T et al (2009) Treatment with the phosphodiesterase type-4 inhibitor rolipram fails to inhibit blood--brain barrier disruption in multiple sclerosis. Mult Scler 15:1206–1214. doi:10.1177/1352458509345903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boulanger CM (2016) Endothelium. Arterioscler Thromb Vasc Biol 36:e26–31. doi:10.1161/atvbaha.116.306940

    Article  CAS  PubMed  Google Scholar 

  7. Cahill PA, Redmond EM (2016) Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis 248:97–109. doi:10.1016/j.atherosclerosis.2016.03.007

    Article  CAS  PubMed  Google Scholar 

  8. Curry F‑RE, Adamson RH (2013) Tonic regulation of vascular permeability. Acta Physiol (Oxf) 207:628–649. doi:10.1111/apha.12076

    Article  CAS  Google Scholar 

  9. Curry FE, Clark JF, Adamson RH (2012) Erythrocyte-derived sphingosine-1-phosphate stabilizes basal hydraulic conductivity and solute permeability in rat microvessels. Am J Physiol Heart Circ Physiol 303:H825–H834. doi:10.1152/ajpheart.00181.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. David S, Ghosh CC, Mukherjee A, Parikh SM (2011) Angiopoietin-1 requires IQ domain GTPase-activating protein 1 to activate Rac1 and promote endothelial barrier defense. Arterioscler Thromb Vasc Biol 31:2643–2652. doi:10.1161/atvbaha.111.233189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. David S, Kümpers P, van Slyke P, Parikh SM (2013) Mending leaky blood vessels: the angiopoietin-Tie2 pathway in sepsis. J Pharmacol Exp Ther 345:2–6. doi:10.1124/jpet.112.201061

    Article  CAS  PubMed  Google Scholar 

  12. Dransfield MT, Bourbeau J, Jones PW et al (2013) Once-daily inhaled fluticasone furoate and vilanterol versus vilanterol only for prevention of exacerbations of COPD: two replicate double-blind, parallel-group, randomised controlled trials. Lancet Respir Med 1:210–223. doi:10.1016/s2213-2600(13)70040-7

    Article  CAS  PubMed  Google Scholar 

  13. Flemming S, Schlegel N, Wunder C et al (2014) Phosphodiesterase-4-inhibition dose-dependently stabilizes microvascular barrier functions and microcirculation in a rodent model of polymicrobial sepsis. Shock 41(6):537–545. doi:10.1097/shk.0000000000000152

    Article  CAS  PubMed  Google Scholar 

  14. Gamble JR, Drew J, Trezise L et al (2000) Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 87:603–607

    Article  CAS  PubMed  Google Scholar 

  15. Hori S, Ohtsuki S, Hosoya K‑I et al (2004) A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem 89:503–513. doi:10.1111/j.1471-4159.2004.02343.x

    Article  CAS  PubMed  Google Scholar 

  16. Konrad FM, Bury A, Schick MA et al (2015) The unrecognized effects of phosphodiesterase 4 on epithelial cells in pulmonary inflammation. PLOS ONE 10:e0121725. doi:10.1371/journal.pone.0121725

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kraft P, Schwarz T, Göb E et al (2013) The phosphodiesterase-4 inhibitor rolipram protects from ischemic stroke in mice by reducing blood-brain-barrier damage, inflammation and thrombosis. Exp Neurol 247C:80–90. doi:10.1016/j.expneurol.2013.03.026

    Article  Google Scholar 

  18. Lee S‑W, Kim WJ, Jun H‑O et al (2009) Angiopoietin-1 reduces vascular endothelial growth factor-induced brain endothelial permeability via upregulation of ZO-2. Int J Mol Med 23:279–284

    CAS  PubMed  Google Scholar 

  19. Lee WL, Slutsky AS (2010) Sepsis and endothelial permeability. N Engl J Med 363:689–691. doi:10.1056/nejmcibr1007320

    Article  CAS  PubMed  Google Scholar 

  20. Lin Y‑C, Adamson RH, Clark JF et al (2011) Phosphodiesterase 4 inhibition attenuates plasma volume loss and transvascular exchange in volume-expanded mice. J Physiol (Lond) 590:309–322. doi:10.1113/jphysiol.2011.213447

    Article  Google Scholar 

  21. Lipworth BJ (2005) Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease. Lancet 365:167–175. doi:10.1016/s0140-6736(05)17708-3

    Article  CAS  PubMed  Google Scholar 

  22. London NR, Li DY (2011) Robo4-dependent Slit signaling stabilizes the vasculature during pathologic angiogenesis and cytokine storm. Curr Opin Hematol 18:186–190. doi:10.1097/moh.0b013e328345a4b9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. London NR, Zhu W, Bozza FA et al (2010) Targeting Robo4-dependent slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med 2:23ra19. doi:10.1126/scitranslmed.3000678

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 109:366–398. doi:10.1016/j.pharmthera.2005.07.003

    Article  CAS  PubMed  Google Scholar 

  25. Luo P, Li S, Chen Y et al (2016) Efficiency and safety of roflumilast combined with long-acting bronchodilators on moderate-to-severe stable chronic obstructive pulmonary disease patients: a meta-analysis. J Thorac Dis 8:2638–2645. doi:10.21037/jtd.2016.09.12

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maier S, Traeger T, Entleutner M et al (2004) Cecal ligation and puncture versus colon ascendens stent peritonitis: two distinct animal models for polymicrobial sepsis. Shock 21:505–511

    Article  PubMed  Google Scholar 

  27. Moss A (2013) The angiopoietin:Tie 2 interaction: a potential target for future therapies in human vascular disease. Cytokine Growth Factor Rev 24:579–592. doi:10.1016/j.cytogfr.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  28. Netherton SJ, Maurice DH (2003) Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol 64:533–546. doi:10.1124/mol.64.3.533

    Article  PubMed  Google Scholar 

  29. O’Byrne PM, Gauvreau G (2009) Phosphodiesterase-4 inhibition in COPD. Lancet 374:665–667. doi:10.1016/s0140-6736(09)61538-5

    Article  PubMed  Google Scholar 

  30. Rhodes A, Evans LE, Alhazzani W et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. doi:10.1007/s00134-017-4683-6

    Google Scholar 

  31. Schick MA, Wunder C, Wollborn J et al (2012) Phosphodiesterase-4 inhibition as a therapeutic approach to treat capillary leakage in systemic inflammation. J Physiol. doi:10.1113/jphysiol.2012.232116

    PubMed  PubMed Central  Google Scholar 

  32. Schlegel N, Baumer Y, Drenckhahn D, Waschke J (2009) Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro. Crit Care Med 37:1735–1743. doi:10.1097/ccm.0b013e31819deb6a

    Article  CAS  PubMed  Google Scholar 

  33. Schlegel N, Waschke J (2009) Impaired cAMP and Rac 1 signaling contribute to TNF-alpha-induced endothelial barrier breakdown in microvascular endothelium. Microcirculation 16:521–533. doi:10.1080/10739680902967427

    Article  CAS  PubMed  Google Scholar 

  34. Schlegel N, Waschke J (2014) cAMP with other signaling cues converges on Rac1 to stabilize the endothelial barrier- a signaling pathway compromised in inflammation. Cell Tissue Res 355:587–596. doi:10.1007/s00441-013-1755-y

    Article  CAS  PubMed  Google Scholar 

  35. Schlegel N, Flemming S, Meir M, Germer C‑T (2014) Is a different view on the pathophysiology of sepsis the key for novel therapeutic options? Chirurg 85:714–719. doi:10.1007/s00104-014-2837-4

    Article  CAS  PubMed  Google Scholar 

  36. Shankar-Hari M, Phillips GS, Levy ML et al (2016) Developing a new definition and assessing new clinical criteria for septic shock: for the third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8):775–787. doi:10.1001/jama.2016.0289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spindler V, Schlegel N, Waschke J (2010) Role of GTPases in control of microvascular permeability. Cardiovasc Res 87:243–253. doi:10.1093/cvr/cvq086

    Article  CAS  PubMed  Google Scholar 

  38. Wachtel H (1982) Characteristic behavioural alterations in rats induced by rolipram and other selective adenosine cyclic 3„, 5“-monophosphate phosphodiesterase inhibitors. Psychopharmacology (Berl) 77:309–316

    Article  CAS  Google Scholar 

  39. Winkler MS, Nierhaus A, Holzmann M et al (2015) Decreased serum concentrations of sphingosine-1-phosphate in sepsis. Crit Care 19:372. doi:10.1186/s13054-015-1089-0

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wollborn J, Wunder C, Stix J et al (2015) Phosphodiesterase-4 inhibition with rolipram attenuates hepatocellular injury in hyperinflammation in vivo and in vitro without influencing inflammation and HO-1 expression. J Pharmacol Pharmacother 6:13–23. doi:10.4103/0976-500x.149138

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zimmerman NP, Kumar SN, Turner JR, Dwinell MB (2012) Cyclic AMP dysregulates intestinal epithelial cell restitution through PKA and RhoA. Inflamm Bowel Dis 18:1081–1091. doi:10.1002/ibd.21898

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Schick.

Ethics declarations

Interessenkonflikt

J. Wollborn, N. Schlegel und M.A. Schick geben an, dass kein Interessenkonflikt besteht.

Alle nationalen Richtlinien zur Haltung und zum Umgang mit Labortieren wurden eingehalten und die notwendigen Zustimmungen der zuständigen Behörden liegen vor.

Additional information

M.A. Schick ist Mitglied des „Wissenschaftlichen Arbeitskreises Wissenschaftlicher Nachwuchs (WAKWiN)“ der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin e. V. (DGAI).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wollborn, J., Schlegel, N. & Schick, M.A. Phosphodiesterase-4-Inhibition zur Therapie der endothelialen Schranken- und Mikrozirkulationsstörung in der Sepsis. Anaesthesist 66, 347–352 (2017). https://doi.org/10.1007/s00101-017-0305-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-017-0305-5

Schlüsselwörter

Keywords

Navigation