Skip to main content
Log in

Maligne Hyperthermie

Malignant hyperthermia

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die maligne Hyperthermie (MH) ist eine seltene hereditäre, meist subklinische Myopathie. Triggersubstanzen wie volatile Anästhetika und das depolarisierende Muskelrelaxans Succinylcholin können bei prädisponierten Patienten eine potenziell letale Stoffwechselsteigerung auslösen. Ursächlich hierfür ist eine Dysregulation des myoplasmatischen Kalzium(Ca)-Haushalts. Mutationen im Dihydropyridin-Ryanodin-Rezeptorkomplex im Zusammenspiel mit den Triggersubstanzen sind für eine unkontrollierte Ca-Freisetzung aus dem sarkoplasmatischen Retikulum verantwortlich. Diese führt zur Aktivierung des kontraktilen Apparats und einer massiven Steigerung des zellulären Energieumsatzes. Das Erschöpfen der zellulären Energiereserven endet im lokalen Muskelzelluntergang mit konsekutivem Herz-Kreislauf-Versagen. Das klinische Bild einer MH-Episode ist sehr variabel. Hypoxie, Hyperkapnie und Herzrhythmusstörungen sind frühe Symptome, während der namensgebende Temperaturanstieg oft erst später auftritt. Entscheidend für den Verlauf einer MH-Episode ist die frühzeitige gezielte Therapie. Nach Einführung des Hydantoinderivats Dantrolen konnte die vormals hohe Letalität fulminanter MH-Verläufe auf weit unter 10 % gesenkt werden. Eine MH-Veranlagung kann mithilfe des invasiven In-vitro-Kontrakturtests (IVCT) oder der Mutationsanalyse nachgewiesen werden. Weniger aufwendige Diagnoseverfahren befinden sich in Entwicklung.

Abstract

Malignant hyperthermia (MH) is a rare hereditary, mostly subclinical myopathy. Trigger substances, such as volatile anesthetic agents and the depolarizing muscle relaxant succinylcholine can induce a potentially fatal metabolic increase in predisposed patients caused by a dysregulation of the myoplasmic calcium (Ca) concentration. Mutations in the dihydropyridine ryanodine receptor complex in combination with the trigger substances are responsible for an uncontrolled release of Ca from the sarcoplasmic reticulum. This leads to activation of the contractile apparatus and a massive increase in cellular energy production. Exhaustion of the cellular energy reserves ultimately results in local muscle cell destruction and subsequent cardiovascular failure. The clinical picture of MH episodes is very variable. Early symptoms are hypoxia, hypercapnia and cardiac arrhythmia whereas the body temperature rise, after which MH is named, often occurs later. Decisive for the course of MH episodes is a timely targeted therapy. Following introduction of the hydantoin derivative dantrolene, the previously high mortality of fulminant MH episodes could be reduced to well under 10 %. An MH predisposition can be detected using the invasive in vitro contracture test (IVCT) or mutation analysis. Few elaborate diagnostic procedures are in the developmental stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Gibson C (1900) Heat stroke as a postoperative complication. Med News (NY) 883–888

  2. Steinfath M, Wappler F, Scholz J (2002) Malignant hyperthermia. General, clinical and experimental aspects. Anaesthesist 51:328–345

    Article  CAS  PubMed  Google Scholar 

  3. Denborough MA, Forster JF, Lovell RR et al (1962) Anaesthetic deaths in a family. Br J Anaesth 34:395–396

    Article  CAS  PubMed  Google Scholar 

  4. Hall GM, Lucke JN, Lister D (1980) Malignant hyperthermia – pearls out of swine? Br J Anaesth 52:165–171

    Article  CAS  PubMed  Google Scholar 

  5. Roewer N (1991) Malignant hyperthermia today. Anasthesiol Intensivmed Notfallmed Schmerzther 26:431–449

    Article  CAS  PubMed  Google Scholar 

  6. Harrison GG (1975) Control of the malignant hyperpyrexic syndrome in MHS swine by dantrolene sodium. Br J Anaesth 47:62–65

    Article  CAS  PubMed  Google Scholar 

  7. Ellis FR, Harriman DG (1973) A new screening test for susceptibility to malignant hyperpyrexia. Br J Anaesth 45:638

    Article  CAS  PubMed  Google Scholar 

  8. European Malignant Hyperpyrexia Group (1984) A protocol for the investigation of malignant hyperpyrexia (MH) susceptibility. Br J Anaesth 56:1267–1269

    Article  Google Scholar 

  9. Monnier N, Krivosic-Horber R, Payen JF et al (2002) Presence of two different genetic traits in malignant hyperthermia families: implication for genetic analysis, diagnosis, and incidence of malignant hyperthermia susceptibility. Anesthesiology 97:1067–1074

    Article  CAS  PubMed  Google Scholar 

  10. Ruffert H, Wehner M, Deutrich C, Olthoff D (2007) Malignant hyperthermia. The ugly. Anaesthesist 56:923–929

    Article  CAS  PubMed  Google Scholar 

  11. Anetseder M, Hartung E, Klepper S, Reichmann H (1994) Gasoline vapors induce severe rhabdomyolysis. Neurology 44:2393–2395

    Article  CAS  PubMed  Google Scholar 

  12. Denborough MA, Hopkinson KC, Banney DG (1988) Firefighting and malignant hyperthermia. Br Med J (Clin Res Ed) 296:1442–1443

    Article  Google Scholar 

  13. Ording H (1985) Incidence of malignant hyperthermia in Denmark. Anesth Analg 64:700–704

    CAS  PubMed  Google Scholar 

  14. Hartung E, Anetseder M, Olthoff D et al (1998) Regional distribution of predisposition to maligant hyperthermia in Germany: state in 1997. Anasthesiol Intensivmed Notfallmed Schmerzther 33:238–243

    Article  CAS  PubMed  Google Scholar 

  15. Bandschapp O, Girard T (2012) Malignant hyperthermia. Swiss Med Wkly 142:w13652

    PubMed  Google Scholar 

  16. Faulkner JA, Claflin DR, McCully KK, Jones DA (1982) Contractile properties of bundles of fiber segments from skeletal muscles. Am J Physiol 243:C66–C73

    CAS  PubMed  Google Scholar 

  17. Rosenberg H (2013) Myopathic changes in malignant hyperthermia-susceptible patients. Can J Anaesth 60:955–959

    Article  PubMed  Google Scholar 

  18. Parness J, Bandschapp O, Girard T (2009) The myotonias and susceptibility to malignant hyperthermia. Anesth Analg 109:1054–1064

    Article  PubMed  Google Scholar 

  19. Klingler W, Rueffert H, Lehmann-Horn F et al (2009) Core myopathies and risk of malignant hyperthermia. Anesth Analg 109:1167–1173

    Article  PubMed  Google Scholar 

  20. Platt D, Griggs R (2009) Skeletal muscle channelopathies: new insights into the periodic paralyses and nondystrophic myotonias. Curr Opin Neurol 22:524–531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Gurnaney H, Brown A, Litman RS (2009) Malignant hyperthermia and muscular dystrophies. Anesth Analg 109:1043–1048

    Article  PubMed  Google Scholar 

  22. Benca J, Hogan K (2009) Malignant hyperthermia, coexisting disorders, and enzymopathies: risks and management options. Anesth Analg 109:1049–1053

    Article  PubMed  Google Scholar 

  23. Martin E, Shapiro JR (2007) Osteogenesis imperfecta: epidemiology and pathophysiology. Curr Osteoporos Rep 5:91–97

    Article  PubMed  Google Scholar 

  24. Strawn JR, Keck PE Jr, Caroff SN (2007) Neuroleptic malignant syndrome. Am J Psychiatry 164:870–876

    Article  PubMed  Google Scholar 

  25. Huttemann K, Nowe T, Kohrmann M et al (2009) Malignant hyperthermia and its differential diagnosis. Fortschr Neurol Psychiatr 77:203–211

    Article  CAS  PubMed  Google Scholar 

  26. Wedel DJ, Gammel SA, Milde JH, Iaizzo PA (1993) Delayed onset of malignant hyperthermia induced by isoflurane and desflurane compared with halothane in susceptible swine. Anesthesiology 78:1138–1144

    Article  CAS  PubMed  Google Scholar 

  27. Girard T, Suhner M, Levano S et al (2008) A fulminant malignant hyperthermia episode in a patient with ryanodine receptor gene mutation p.Tyr522Ser. Anesth Analg 107:1953–1955

    Article  PubMed  Google Scholar 

  28. Wappler F, Fiege M (2003) Is desflurane a „weak“ trigger of malignant hyperthermia? Anesth Analg 97:295

    Article  PubMed  Google Scholar 

  29. Olthoff D, Vonderlind C (1997) Anesthesia unrelated triggering of a fatal malignant hyperthermia crisis. Anaesthesist 46:1076–1080

    Article  CAS  PubMed  Google Scholar 

  30. Rusyniak DE, Banks ML, Mills EM, Sprague JE (2004) Dantrolene use in 3,4-methylenedioxymethamphetamine (ecstasy)-mediated hyperthermia. Anesthesiology 101:263

    Article  PubMed  Google Scholar 

  31. Tegazzin V, Scutari E, Treves S, Zorzato F (1996) Chlorocresol, an additive to commercial succinylcholine, induces contracture of human malignant hyperthermia-susceptible muscles via activation of the ryanodine receptor Ca2+ channel. Anesthesiology 84:1380–1385

    Article  CAS  PubMed  Google Scholar 

  32. Wappler F, Scholz J, Fiege M et al (1999) 4-chloro-m-cresol is a trigger of malignant hyperthermia in susceptible swine. Anesthesiology 90:1733–1740

    Article  CAS  PubMed  Google Scholar 

  33. Johannsen S, Roewer N, Schuster F (2012) Ondansetron-induced muscular contractures in malignant hyperthermia-susceptible individuals. Anesth Analg 115:925–928

    Article  PubMed  Google Scholar 

  34. Metterlein T, Schuster F, Tadda L et al (2010) Statins alter intracellular calcium homeostasis in malignant hyperthermia susceptible individuals. Cardiovasc Ther 28:356–360

    Article  CAS  PubMed  Google Scholar 

  35. Metterlein T, Schuster F, Tadda L et al (2011) Fluoroquinolones influence the intracellular calcium handling in individuals susceptible to malignant hyperthermia. Muscle Nerve 44(2):208–212

    Article  CAS  PubMed  Google Scholar 

  36. Wingard DW (1974) Letter: malignant hyperthermia: a human stress syndrome? Lancet 2:1450–1451

    Article  CAS  PubMed  Google Scholar 

  37. Gronert GA, Milde JH, Theye RA (1977) Role of sympathetic activity in porcine malignant hyperthermia. Anesthesiology 47:411–415

    Article  CAS  PubMed  Google Scholar 

  38. Rosenberg H, Davis M, James D et al (2007) Malignant hyperthermia. Orphanet J Rare Dis 2:21

    Article  PubMed Central  PubMed  Google Scholar 

  39. Wappler F, Fiege M, Steinfath M et al (2001) Evidence for susceptibility to malignant hyperthermia in patients with exercise-induced rhabdomyolysis. Anesthesiology 94:95–100

    Article  CAS  PubMed  Google Scholar 

  40. Dirksen RT, Avila G (2004) Distinct effects on Ca2+ handling caused by malignant hyperthermia and central core disease mutations in RyR1. Biophys J 87:3193–3204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hall GM, Lucke JN, Lister D (1975) Treatment of porcine malignant hyperthermia. A review based on experimental studies. Anaesthesia 30:308–317

    Article  CAS  PubMed  Google Scholar 

  42. Iaizzo PA, Kehler CH, Carr RJ et al (1996) Prior hypothermia attenuates malignant hyperthermia in susceptible swine. Anesth Analg 82:803–809

    CAS  PubMed  Google Scholar 

  43. Newson AJ (1972) Malignant hyperthermia: three case reports. N Z Med J 75:138–143

    CAS  PubMed  Google Scholar 

  44. Metterlein T, Zink W, Kranke E et al (2011) Cardiopulmonary bypass in malignant hyperthermia susceptible patients: a systematic review of published cases. J Thorac Cardiovasc Surg 141:1488–1495

    Article  PubMed  Google Scholar 

  45. Tong J, Oyamada H, Demaurex N et al (1997) Caffeine and halothane sensitivity of intracellular Ca2+ release is altered by 15 calcium release channel (ryanodine receptor) mutations associated with malignant hyperthermia and/or central core disease. J Biol Chem 272:26332–26339

    Article  CAS  PubMed  Google Scholar 

  46. Wappler F (2001) Malignant hyperthermia. Eur J Anaesthesiol 18:632–652

    Article  CAS  PubMed  Google Scholar 

  47. Striessnig J, Hoda JC, Koschak A et al (2004) L-type Ca2+ channels in Ca2+ channelopathies. Biochem Biophys Res Commun 322:1341–1346

    Article  CAS  PubMed  Google Scholar 

  48. Esteve E, Eltit JM, Bannister RA et al (2010) A malignant hyperthermia-inducing mutation in RYR1 (R163C): alterations in Ca2+ entry, release, and retrograde signaling to the DHPR. J Gen Physiol 135:619–628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Melzer W, Dietze B (2001) Malignant hyperthermia and excitation-contraction coupling. Acta Physiol Scand 171:367–378

    Article  CAS  PubMed  Google Scholar 

  50. Fill M, Coronado R, Mickelson JR et al (1990) Abnormal ryanodine receptor channels in malignant hyperthermia. Biophys J 57:471–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Litman RS, Flood CD, Kaplan RF et al (2008) Postoperative malignant hyperthermia: an analysis of cases from the North American Malignant Hyperthermia Registry. Anesthesiology 109:825–829

    Article  PubMed  Google Scholar 

  52. Hoenemann CW, Halene-Holtgraeve TB, Booke M et al (2003) Delayed onset of malignant hyperthermia in desflurane anesthesia. Anesth Analg 96:165–167 (table)

    PubMed  Google Scholar 

  53. Bonciu M, Chapelle A de la, Delpech H et al (2007) Minor increase of endtidal CO2 during sevoflurane-induced malignant hyperthermia. Paediatr Anaesth 17:180–182

    Article  PubMed  Google Scholar 

  54. Barbier M, Lafaye AL, Guerin R et al (2009) A case of malignant hyperthermia arising five hours after the beginning of anaesthesia with sevoflurane and after five uneventful surgical procedures. Ann Fr Anesth Reanim 28:983–987

    Article  CAS  PubMed  Google Scholar 

  55. Schuster F, Muller-Reible CR (2009) Malignant hyperthermia – diagnostics, treatment and anaesthetic management. Anasthesiol Intensivmed Notfallmed Schmerzther 44:758–763

    Article  PubMed  Google Scholar 

  56. Litman RS, Rosenberg H (2009) Malignant hyperthermia-associated diseases: state of the art uncertainty. Anesth Analg 109:1004–1005

    Article  PubMed  Google Scholar 

  57. Schuster F, Johannsen S, Roewer N (2013) Helsinki declaration on patient safety in anaesthesiology – part 3: SOP for malignant hyperthermia. Anasthesiol Intensivmed Notfallmed Schmerzther 48:162–164

    Article  PubMed  Google Scholar 

  58. Larach MG, Localio AR, Allen GC et al (1994) A clinical grading scale to predict malignant hyperthermia susceptibility. Anesthesiology 80:771–779

    Article  CAS  PubMed  Google Scholar 

  59. Richthofen V von, Wappler F, Scholz J et al (1998) Evaluation of malignant hyperthermia episodes with the Clinical Grading Scale. Anasthesiol Intensivmed Notfallmed Schmerzther 33:244–249

    Article  Google Scholar 

  60. DGAI (2008) Maligne Hyperthermie. Anaesth Intensivmed 49:483–488

    Google Scholar 

  61. Glahn KP, Ellis FR, Halsall PJ et al (2010) Recognizing and managing a malignant hyperthermia crisis: guidelines from the European Malignant Hyperthermia Group. Br J Anaesth 105:417–420

    Article  CAS  PubMed  Google Scholar 

  62. Reber A, Schumacher P, Urwyler A (1993) Effects of three different types of management on the elimination kinetics of volatile anaesthetics. Implications for malignant hyperthermia treatment. Anaesthesia 48:862–865

    Article  CAS  PubMed  Google Scholar 

  63. Podranski T, Bouillon T, Schumacher PM et al (2005) Compartmental pharmacokinetics of dantrolene in adults: do malignant hyperthermia association dosing guidelines work? Anesth Analg 101:1695–1699

    Article  CAS  PubMed  Google Scholar 

  64. Gerbershagen MU, Fiege M, Krause T et al (2003) Dantrolene. Pharmacological and therapeutic aspects. Anaesthesist 52:238–245

    Article  CAS  PubMed  Google Scholar 

  65. Carmo PL do, Zapata-Sudo G, Trachez MM et al (2010) Intravenous administration of azumolene to reverse malignant hyperthermia in swine. J Vet Intern Med 24:1224–1228

    Article  PubMed  Google Scholar 

  66. Beker S (2007) Vergleich der therapeutischen Effektivität des Dantrolens zu der neuen hydrophilen Dantrolen-Formulierung (Ryanodex) in Maligne Hyperthermie positiven Schweinen. EMHG Meeting, Riga, 16.05.2007

  67. Migita T, Mukaida K, Yasuda T et al (2012) Calcium channel blockers are inadequate for malignant hyperthermia crisis. J Anesth 26:579–584

    Article  PubMed  Google Scholar 

  68. Bosch X, Poch E, Grau JM (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 361:62–72

    Article  CAS  PubMed  Google Scholar 

  69. Metterlein T, Schuster F, Kranke P et al (2011) Magnesium does not influence the clinical course of succinylcholine-induced malignant hyperthermia. Anesth Analg 112:1174–1178

    Article  CAS  PubMed  Google Scholar 

  70. Schulte-Sasse U, Eberlein HJ (1987) „Round the clock“ – an information service for malignant hyperthermia emergencies. Anasth Intensivther Notfallmed 22:249

    Article  CAS  PubMed  Google Scholar 

  71. Rosenberg H, Antognini JF, Muldoon S (2002) Testing for malignant hyperthermia. Anesthesiology 96:232–237

    Article  PubMed  Google Scholar 

  72. Ording H, Brancadoro V, Cozzolino S et al (1997) In vitro contracture test for diagnosis of malignant hyperthermia following the protocol of the European MH Group: results of testing patients surviving fulminant MH and unrelated low-risk subjects. The European Malignant Hyperthermia Group. Acta Anaesthesiol Scand 41:955–966

    Article  CAS  PubMed  Google Scholar 

  73. Isaacs H, Badenhorst M (1993) False-negative results with muscle caffeine halothane contracture testing for malignant hyperthermia. Anesthesiology 79:5–9

    Article  CAS  PubMed  Google Scholar 

  74. Litman RS, Rosenberg H (2005) Malignant hyperthermia: update on susceptibility testing. JAMA 293:2918–2924

    Article  CAS  PubMed  Google Scholar 

  75. McCarthy TV, Healy JM, Heffron JJ et al (1990) Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q12-13.2. Nature 343:562–564

    Article  CAS  PubMed  Google Scholar 

  76. MacLennan DH, Duff C, Zorzato F et al (1990) Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 343:559–561

    Article  CAS  PubMed  Google Scholar 

  77. Phillips MS, Fujii J, Khanna VK et al (1996) The structural organization of the human skeletal muscle ryanodine receptor (RYR1) gene. Genomics 34:24–41

    Article  CAS  PubMed  Google Scholar 

  78. Robinson R, Carpenter D, Shaw MA et al (2006) Mutations in RYR1 in malignant hyperthermia and central core disease. Hum Mutat 27:977–989

    Article  CAS  PubMed  Google Scholar 

  79. o A (2010) European Malignant Hyperthermia Group: EMHG

  80. Stowell KM (2014) DNA testing for malignant hyperthermia: the reality and the dream. Anesth Analg 118:397–406

    Article  CAS  PubMed  Google Scholar 

  81. Urwyler A, Deufel T, McCarthy T, West S (2001) Guidelines for molecular genetic detection of susceptibility to malignant hyperthermia. Br J Anaesth 86:283–287

    Article  CAS  PubMed  Google Scholar 

  82. Deufel T, Sudbrak R, Feist Y et al (1995) Discordance, in a malignant hyperthermia pedigree, between in vitro contracture-test phenotypes and haplotypes for the MHS1 region on chromosome 19q12-13.2, comprising the C1840T transition in the RYR1 gene. Am J Hum Genet 56:1334–1342

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Robinson RL, Anetseder MJ, Brancadoro V et al (2003) Recent advances in the diagnosis of malignant hyperthermia susceptibility: how confident can we be of genetic testing? Eur J Hum Genet 11:342–348

    Article  CAS  PubMed  Google Scholar 

  84. McKinney LC, Butler T, Mullen SP, Klein MG (2006) Characterization of ryanodine receptor-mediated calcium release in human B cells: relevance to diagnostic testing for malignant hyperthermia. Anesthesiology 104:1191–1201

    Article  CAS  PubMed  Google Scholar 

  85. Anetseder M, Hager M, Muller CR, Roewer N (2002) Diagnosis of susceptibility to malignant hyperthermia by use of a metabolic test. Lancet 359:1579–1580

    Article  PubMed  Google Scholar 

  86. Schuster F, Hager M, Metterlein T et al (2008) In-vivo diagnosis of malignant hyperthermia susceptibility: a microdialysis study. Anaesthesist 57:767–774

    Article  CAS  PubMed  Google Scholar 

  87. Schuster F, Metterlein T, Negele S et al (2008) An in-vivo metabolic test for detecting malignant hyperthermia susceptibility in humans: a pilot study. Anesth Analg 107:909–914

    Article  PubMed  Google Scholar 

  88. Kim TW, Tham RQ (2013) Washout times of desflurane, sevoflurane and isoflurane from the GE Healthcare Aisys(R) and Avance(R), Carestation(R), and Aestiva(R) anesthesia system. Paediatr Anaesth 23:1124–1130

    PubMed  Google Scholar 

  89. Carr AS, Lerman J, Cunliffe M et al (1995) Incidence of malignant hyperthermia reactions in 2,214 patients undergoing muscle biopsy. Can J Anaesth 42:281–286

    Article  CAS  PubMed  Google Scholar 

  90. MacLennan DH, Phillips MS (1992) Malignant hyperthermia. Science 256:789–794

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. T. Metterlein, F. Schuster, B.M. Graf und M. Anetseder geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Metterlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metterlein, T., Schuster, F., Graf, B. et al. Maligne Hyperthermie. Anaesthesist 63, 908–918 (2014). https://doi.org/10.1007/s00101-014-2392-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-014-2392-x

Schlüsselwörter

Keywords

Navigation