Skip to main content
Log in

Intraoperatives elektrophysiologisches Monitoring mit evozierten Potenzialen

Intraoperative electrophysiological monitoring with evoked potentials

  • Allgemeinanästhesie
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Das intraoperative elektrophysiologische Monitoring (IOEM) hat seit über 30 Jahren zunehmende Bedeutung erlangt, um die Funktion von neuronalen Strukturen zu überwachen und operative Folgeschäden zu vermeiden. Durch die Verwendung von IOEM konnte die Inzidenz postoperativer neurologischer Defizite nach vielen Eingriffen gesenkt werden. Motorisch evozierte Potenziale (MEP) scheinen hierbei anderen Verfahren in vielen Einsatzbereichen bei der Überwachung des zentralen Nervensystems überlegen zu sein. Während der Anwendung von IOEM sollte die Allgemeinanästhesie opioidbetont und als totale intravenöse Anästhesie mit Propofol durchgeführt werden. Abhängig davon, ob eine MEP- oder Elektromyogrammableitung geplant ist, muss auf eine Muskelrelaxierung entweder verzichtet oder in einem titrierten Dosisbereich ein stabiler Relaxierungszustand beibehalten werden. Das IOEM wird von Chirurgen, Neurologen, Neurophysiologen oder zunehmend auch von Anästhesisten durchgeführt. Für die sichere Anwendung und Interpretation sind Kenntnisse über die Auswirkungen des chirurgischen Eingriffs sowie die pharmakologischen und physiologischen Einflüsse auf die abgeleiteten elektrischen Potenziale essenziell.

Abstract

During the last 30 years intraoperative electrophysiological monitoring (IOEM) has gained increasing importance in monitoring the function of neuronal structures and the intraoperative detection of impending new neurological deficits. The use of IOEM could reduce the incidence of postoperative neurological deficits after various surgical procedures. Motor evoked potentials (MEP) seem to be superior to other methods for many indications regarding monitoring of the central nervous system. During the application of IOEM general anesthesia should be provided by total intravenous anesthesia with propofol with an emphasis on a continuous high opioid dosage. When intraoperative MEP or electromyography guidance is planned, muscle relaxation must be either completely omitted or maintained in a titrated dose range in a steady state. The IOEM can be performed by surgeons, neurologists and neurophysiologists or increasingly more by anesthesiologists. However, to guarantee a safe application and interpretation, sufficient knowledge of the effects of the surgical procedure and pharmacological and physiological influences on the neurophysiological findings are indispensable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Achouh PE, Estrera Al, Miller CC III et al (2007) Role of somatosensory evoked potentials in predicting outcome during thoracoabdominal aortic repair. Ann Thorac Surg 84:782–787

    Article  PubMed  Google Scholar 

  2. Amantini A, Bartelli M, De Scisciolo G et al (1992) Monitoring of somatosensory evoked potentials during carotid endarterectomy. J Neurol 239:241–247

    PubMed  CAS  Google Scholar 

  3. American Society of Anesthesiologists Task Force on Intraoperative Awareness (2006) Practice advisory for intraoperative awareness and brain function monitoring. Anesthesiology 104:847–864

    Article  Google Scholar 

  4. Anschel DJ, Aherne A, Soto RG et al (2008) Successful intraoperative spinal cord monitoring during scoliosis surgery using a total intravenous anesthetic regimen including dexmedetomidine. J Clin Neurophysiol 25:56–61

    Article  PubMed  Google Scholar 

  5. Asouhidou I, Katsaridis V, Vaidis G et al (2010) Somatosensory evoked potentials suppression due to remifentanil during spinal operations; a prospective clinical study. Scoliosis 5:8

    Article  PubMed  Google Scholar 

  6. Banoub M, Tetzlaff JE, Schubert A (2003) Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology 99:716–737

    Article  PubMed  Google Scholar 

  7. Becke K, Eich CB, Kretz F-J et al (2007) Neuromonitoring in Anästhesie und Intensivmedizin – Empfehlungen für eine berufsbegleitende modulare Fortbildung und Zertifizierung. Anaesthesiol Intensivmed 48:48–54

    Google Scholar 

  8. Beese U, Langer H, Lang W et al (1998) Comparison of near-infrared spectroscopy and somatosensory evoked potentials for the detection of cerebral ischemia during carotid endarterectomy. Stroke 29:2032–2037

    Article  PubMed  CAS  Google Scholar 

  9. Bernard JM, Pereon Y, Fayet G et al (1996) Effects of isoflurane and desflurane on neurogenic motor- and somatosensory-evoked potential monitoring for scoliosis surgery. Anesthesiology 85:1013–1019

    Article  PubMed  CAS  Google Scholar 

  10. Bischoff P (2004) Verbessertes Outcome durch Neuromonitoring in der Chirurgie thorakoabdominaler Aortenaneurysmen. Anasthesiol Intensivmed Notfallmed Schmerzther 39:114–117

    Article  PubMed  CAS  Google Scholar 

  11. Boisseau N, Madany M, Staccini P et al (2002) Comparison of the effects of sevoflurane and propofol on cortical somatosensory evoked potentials. Br J Anaesth 88:785–789

    Article  PubMed  CAS  Google Scholar 

  12. Bose B, Wierzbowski LR, Sestokas AK (2002) Neurophysiologic monitoring of spinal nerve root function during instrumented posterior lumbar spine surgery. Spine 27:1444–1450

    Article  PubMed  Google Scholar 

  13. Buchner H (2005) Akustisch evozierte Potenziale (AEP). In: Buchner H, Noth J (Hrsg) Evozierte Potenziale, Neurovegetative Diagnostik, Okulographie. Thieme, Stuttgart, S 39–56

  14. Buchner H, Milnik V (2005) Allgemeine Methodik der evozierten Potenziale. In: Buchner H, Noth J (Hrsg) Evozierte Potenziale, Neurovegetative Diagnostik, Okulographie. Thieme, Stuttgart, S 2–13

  15. Buettner UW (2005) Akustisch evozierte Potenziale (AEP). In: Stöhr M, Dichigans J, Buettner UW, Hess CW (Hrsg) Evozierte Potenziale. Springer, Berlin Heidelberg New York Tokio, S 369–432

  16. Chen L, Spetzler RF, Mcdougall CG et al (2011) Detection of ischemia in endovascular therapy of cerebral aneurysms: a perspective in the era of neurophysiological monitoring. Neurosurg Rev 34:69–75

    Article  PubMed  Google Scholar 

  17. Chen X, Sterio D, Ming X et al (2007) Success rate of motor evoked potentials for intraoperative neurophysiologic monitoring: effects of age, lesion location, and preoperative neurologic deficits. J Clin Neurophysiol 24:281–285

    Article  PubMed  Google Scholar 

  18. Chen Z (2004) The effects of isoflurane and propofol on intraoperative neurophysiological monitoring during spinal surgery. J Clin Monit Comput 18:303–308

    Article  PubMed  Google Scholar 

  19. Claudius C, Viby-Mogensen J (2008) Acceleromyography for use in scientific and clinical practice: a systematic review of the evidence. Anesthesiology 108:1117–1140

    Article  PubMed  Google Scholar 

  20. Crawford ES, Mizrahi EM, Hess KR et al (1988) The impact of distal aortic perfusion and somatosensory evoked potential monitoring on prevention of paraplegia after aortic aneurysm operation. J Thorac Cardiovasc Surg 95:357–367

    PubMed  CAS  Google Scholar 

  21. Da Costa VV, Saraiva RA, De Almeida AC et al (2001) The effect of nitrous oxide on the inhibition of somatosensory evoked potentials by sevoflurane in children. Anaesthesia 56:202–207

    Article  Google Scholar 

  22. Dawson EG, Sherman JE, Kanim LE et al (1991) Spinal cord monitoring. Results of the Scoliosis Research Society and the European Spinal Deformity Society survey. Spine 16:S361–S364

    Article  PubMed  CAS  Google Scholar 

  23. Deiner S (2010) Highlights of anesthetic considerations for intraoperative neuromonitoring. Semin Cardiothorac Vasc Anesth 14:51–53

    Article  PubMed  Google Scholar 

  24. Deiner SG, Kwatra SG, Lin HM et al (2010) Patient characteristics and anesthetic technique are additive but not synergistic predictors of successful motor evoked potential monitoring. Anesth Analg 111:421–425

    Article  PubMed  Google Scholar 

  25. Deletis V, Sala F (2008) Intraoperative neurophysiological monitoring of the spinal cord during spinal cord and spine surgery: a review focus on the corticospinal tracts. Clin Neurophysiol 119:248–264

    Article  PubMed  Google Scholar 

  26. Detsch O, Kochs E (1997) Effekte von Ketamin auf die ZNS-Funktion. Anaesthesist 46(Suppl 1):20–29

    Article  Google Scholar 

  27. Detsch O, Kochs E (1997) Perioperatives Neuromonitoring. Anaesthesist 46:999–1014

    Article  PubMed  CAS  Google Scholar 

  28. Dinkel M (1997) Stellenwert des EP-Monitorings für die Gefäßchirurgie. Anasthesiol Intensivmed Notfallmed Schmerzther 32:S215–S219

    Article  PubMed  CAS  Google Scholar 

  29. Dong CC, Macdonald DB, Janusz MT (2002) Intraoperative spinal cord monitoring during descending thoracic and thoracoabdominal aneurysm surgery. Ann Thorac Surg 74:S1873–S1876; discussion S1892–S1878

    Article  PubMed  Google Scholar 

  30. Duffy MF, Phillips JH, Knapp DR et al (2010) Usefulness of electromyography compared to computed tomography scans in pedicle screw placement. Spine 35:E43–E48

    Article  PubMed  Google Scholar 

  31. Eggspuehler A, Sutter MA, Grob D et al (2007) Multimodal intraoperative monitoring during surgery of spinal deformities in 217 patients. Eur Spine J 16(Suppl 2):188–196

    Article  Google Scholar 

  32. Eggspuehler A, Sutter MA, Grob D et al (2007) Multimodal intraoperative monitoring (MIOM) during cervical spine surgical procedures in 246 patients. Eur Spine J 16(Suppl 2):209–215

    Article  Google Scholar 

  33. El-Hawary R, Sucato DJ, Sparagana S et al (2006) Spinal cord monitoring in patients with spinal deformity and neural axis abnormalities: a comparison with adolescent idiopathic scoliosis patients. Spine 31:E698–E706

    Article  PubMed  Google Scholar 

  34. Estrera AL, Sheinbaum R, Miller CC III et al (2010) Neuromonitor-guided repair of thoracoabdominal aortic aneurysms. J Thorac Cardiovasc Surg 140:S131–S135; discussion S142–S146

    Article  PubMed  Google Scholar 

  35. Fielmuth S, Uhlig T (2008) The role of somatosensory evoked potentials in detecting cerebral ischaemia during carotid endarterectomy. Eur J Anaesthesiol 25:648–656

    Article  PubMed  CAS  Google Scholar 

  36. Florence G, Guerit JM, Gueguen B (2004) Electroencephalography (EEG) and somatosensory evoked potentials (SEP) to prevent cerebral ischaemia in the operating room. Neurophysiol Clin 34:17–32

    Article  PubMed  Google Scholar 

  37. Forbes HJ, Allen PW, Waller CS et al (1991) Spinal cord monitoring in scoliosis surgery. Experience with 1168 cases. J Bone Joint Surg Br 73:487–491

    PubMed  CAS  Google Scholar 

  38. Fudickar A, Leiendecker J, Meybohm P et al (2011) Electrophysiologic neuromonitoring during repair of the thoracoabdominal aorta by anesthesiologists. Minerva Anestesiol 77:861–869

    PubMed  CAS  Google Scholar 

  39. Fung NY, Hu Y, Irwin MG et al (2008) Comparison between sevoflurane/remifentanil and propofol/remifentanil anaesthesia in providing conditions for somatosensory evoked potential monitoring during scoliosis corrective surgery. Anaesth Intensive Care 36:779–785

    PubMed  CAS  Google Scholar 

  40. Gabriel AH, Faryniak B, Sojka G et al (1995) Clonidine: an adjunct in isoflurane N2O/O2 relaxant anaesthesia. Effects on EEG power spectra, somatosensory and auditory evoked potentials. Anaesthesia 50:290–296

    Article  PubMed  CAS  Google Scholar 

  41. Glassman SD, Shields CB, Linden RD et al (1993) Anesthetic effects on motor evoked potentials in dogs. Spine 18:1083–1089

    Article  PubMed  CAS  Google Scholar 

  42. Gonzalez AA, Jeyanandarajan D, Hansen C et al (2009) Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus 27:E6

    Article  PubMed  Google Scholar 

  43. Guertin PA, Hounsgaard J (1999) Non-volatile general anaesthetics reduce spinal activity by suppressing plateau potentials. Neuroscience 88:353–358

    Article  PubMed  CAS  Google Scholar 

  44. Hacke W (1989) Evoked potentials monitoring in interventional neuroradiology. In: Desmedt JE (Hrsg) Neuromonitoring in surgery. Elsevier, Amsterdam, S 331–342

  45. Halsey JH Jr (1992) Risks and benefits of shunting in carotid endarterectomy. The international transcranial doppler collaborators. Stroke 23:1583–1587

    Article  PubMed  Google Scholar 

  46. Haupt WF, Horsch S (1992) Evoked potential monitoring in carotid surgery: a review of 994 cases. Neurology 42:835–838

    PubMed  CAS  Google Scholar 

  47. Hess CW (2005) Motorisch evozierte Potenziale. In: Stöhr M, Dichigans J, Buettner UW, Hess CW (Hrsg) Evozierte Potentiale. Springer, Berlin Heidelberg New York Tokio, S 539–598

  48. Horiuchi T, Kawaguchi M, Inoue S et al (2011) Assessment of intraoperative motor evoked potentials for predicting postoperative paraplegia in thoracic and thoracoabdominal aortic aneurysm repair. J Anesth 25:18–28

    Article  PubMed  Google Scholar 

  49. Iwasaki H, Tamaki T, Yoshida M et al (2003) Efficacy and limitations of current methods of intraoperative spinal cord monitoring. J Orthop Sci 8:635–642

    Article  PubMed  Google Scholar 

  50. Jacobs MJ, Mess W, Mochtar B et al (2006) The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg 43:239–246

    Article  PubMed  Google Scholar 

  51. Juvonen T, Biancari F, Rimpilainen J et al (2002) Strategies for spinal cord protection during descending thoracic and thoracoabdominal aortic surgery: up-to-date experimental and clinical results – a review. Scand Cardiovasc J 36:136–160

    PubMed  Google Scholar 

  52. Kalkman CJ, Leyssius AT, Bovill JG (1988) Influence of high-dose opioid anesthesia on posterior tibial nerve somatosensory cortical evoked potentials: effects of fentanyl, sufentanil, and alfentanil. J Cardiothorac Anesth 2:758–764

    Article  PubMed  CAS  Google Scholar 

  53. Katoh T, Ikeda K (1997) The effect of clonidine on sevoflurane requirements for anaesthesia and hypnosis. Anaesthesia 52:377–381

    Article  PubMed  CAS  Google Scholar 

  54. Kawaguchi M, Sakamoto T, Inoue S et al (2000) Low dose propofol as a supplement to ketamine-based anesthesia during intraoperative monitoring of motor-evoked potentials. Spine 25:974–979

    Article  PubMed  CAS  Google Scholar 

  55. Kelleher MO, Tan G, Sarjeant R et al (2008) Predictive value of intraoperative neurophysiological monitoring during cervical spine surgery: a prospective analysis of 1055 consecutive patients. J Neurosurg Spine 8:215–221

    Article  PubMed  Google Scholar 

  56. Keyhani K, Miller CC III, Estrera AL et al (2009) Analysis of motor and somatosensory evoked potentials during thoracic and thoracoabdominal aortic aneurysm repair. J Vasc Surg 49:36–41

    Article  PubMed  Google Scholar 

  57. Kimovec MA, Koht A, Sloan TB (1990) Effects of sufentanil on median nerve somatosensory evoked potentials. Br J Anaesth 65:169–172

    Article  PubMed  CAS  Google Scholar 

  58. Kochs E, Treede RD, Schulte Am Esch J (1986) Vergrößerung somatosensorisch evozierter Potentiale während Narkoseeinleitung mit Etomidat. Anaesthesist 35:359–364

    PubMed  CAS  Google Scholar 

  59. Koeppel TA, Mess WH, Jacobs MJ (2010) Motor evoked potentials in thoracoabdominal aortic surgery: PRO. Cardiol Clin 28:351–360

    Article  PubMed  CAS  Google Scholar 

  60. Komanetsky RM, Padberg AM, Lenke LG et al (1998) Neurogenic motor evoked potentials: a prospective comparison of stimulation methods in spinal deformity surgery. J Spinal Disord 11:21–28

    Article  PubMed  CAS  Google Scholar 

  61. Kombos T, Picht T, Derdilopoulos A et al (2009) Impact of intraoperative neurophysiological monitoring on surgery of high-grade gliomas. J Clin Neurophysiol 26:422–425

    Article  PubMed  Google Scholar 

  62. Kombos T, Süss O, Ciklatekerlio O et al (2001) Monitoring of intraoperative motor evoked potentials to increase the safety of surgery in and around the motor cortex. J Neurosurg 95:608–614

    Article  PubMed  CAS  Google Scholar 

  63. Kombos T, Süss O (2009) Neurophysiological basis of direct cortical stimulation and applied neuroanatomy of the motor cortex: a review. Neurosurg Focus 27:E3

    Article  PubMed  Google Scholar 

  64. Kothbauer KF (2007) Intraoperative neurophysiologic monitoring for intramedullary spinal-cord tumor surgery. Neurophysiol Clin 37:407–414

    Article  PubMed  CAS  Google Scholar 

  65. Kothbauer KF (2002) Motor evoked potential monitoring for intramedullary spinal cord tumor surgery. In: Deletis V, Shils J (Hrsg) Neurophysiology in neurosurgery – a modern intraoperative approach. Academic Press, Amsterdam, S 73–92

  66. Kothbauer KF, Deletis V, Epstein FJ (1998) Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus 4:e1

    Article  PubMed  CAS  Google Scholar 

  67. Krieger D, Adams HP, Rieke K et al (1993) Monitoring therapeutic efficacy of decompressive craniotomy in space occupying cerebellar infarcts using brain-stem auditory evoked potentials. Electroencephalogr Clin Neurophysiol 88:261–270

    Article  PubMed  CAS  Google Scholar 

  68. Ku AS, Hu Y, Irwin MG et al (2002) Effect of sevoflurane/nitrous oxide versus propofol anaesthesia on somatosensory evoked potential monitoring of the spinal cord during surgery to correct scoliosis. Br J Anaesth 88:502–507

    Article  PubMed  CAS  Google Scholar 

  69. Lam AM, Manninen PH, Ferguson GG et al (1991) Monitoring electrophysiologic function during carotid endarterectomy: a comparison of somatosensory evoked potentials and conventional electroencephalogram. Anesthesiology 75:15–21

    Article  PubMed  CAS  Google Scholar 

  70. Lam AM, Sharar SR, Mayberg TS et al (1994) Isoflurane compared with nitrous oxide anaesthesia for intraoperative monitoring of somatosensory-evoked potentials. Can J Anaesth 41:295–300

    Article  PubMed  CAS  Google Scholar 

  71. Langeron O, Lille F, Zerhouni O et al (1997) Comparison of the effects of ketamine-midazolam with those of fentanyl-midazolam on cortical somatosensory evoked potentials during major spine surgery. Br J Anaesth 78:701–706

    Article  PubMed  CAS  Google Scholar 

  72. Levine WC, Lee JJ, Black JH et al (2005) Thoracoabdominal aneurysm repair: anesthetic management. Int Anesthesiol Clin 43:39–60

    Article  PubMed  Google Scholar 

  73. Liu EH, Wong HK, Chia CP et al (2005) Effects of isoflurane and propofol on cortical somatosensory evoked potentials during comparable depth of anaesthesia as guided by bispectral index. Br J Anaesth 94:193–197

    Article  PubMed  CAS  Google Scholar 

  74. Lo YL, Dan YF, Tan YE et al (2006) Intraoperative motor-evoked potential monitoring in scoliosis surgery: comparison of desflurane/nitrous oxide with propofol total intravenous anesthetic regimens. J Neurosurg Anesthesiol 18:211–214

    Article  PubMed  Google Scholar 

  75. Luk KD, Hu Y, Wong YW et al (2001) Evaluation of various evoked potential techniques for spinal cord monitoring during scoliosis surgery. Spine 26:1772–1777

    Article  PubMed  CAS  Google Scholar 

  76. Macdonald DB (2002) Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 19:416–429

    Article  PubMed  Google Scholar 

  77. Macdonald DB, Al Zayed Z, Khoudeir I et al (2003) Monitoring scoliosis surgery with combined multiple pulse transcranial electric motor and cortical somatosensory-evoked potentials from the lower and upper extremities. Spine 28:194–203

    Article  PubMed  Google Scholar 

  78. Malhotra NR, Shaffrey CI (2010) Intraoperative electrophysiological monitoring in spine surgery. Spine 35:2167–2179

    Article  PubMed  Google Scholar 

  79. Maurer K, Wacker J, Vastani N et al (2010) Changes in axonal excitability of primary sensory afferents with general anaesthesia in humans. Br J Anaesth 105:648–656

    Article  PubMed  CAS  Google Scholar 

  80. McPherson RW, Sell B, Traystman RJ (1986) Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology 65:584–589

    Article  PubMed  CAS  Google Scholar 

  81. Meylaerts SA, Jacobs MJ, Van Iterson V et al (1999) Comparison of transcranial motor evoked potentials and somatosensory evoked potentials during thoracoabdominal aortic aneurysm repair. Ann Surg 230:742–749

    Article  PubMed  CAS  Google Scholar 

  82. Moller AR (2002) Monitoring and mapping the cranial nerves and the brainstem. In: Deletis V, Shils J (Hrsg) Neurophysiology in neurosurgery – a modern intraoperative approach. Academic Press, Amsterdam, S 291–318

  83. Moritz S, Kasprzak P, Arlt M et al (2007) Accuracy of cerebral monitoring in detecting cerebral ischemia during carotid endarterectomy: a comparison of transcranial doppler sonography, near-infrared spectroscopy, stump pressure, and somatosensory evoked potentials. Anesthesiology 107:563–569

    Article  PubMed  Google Scholar 

  84. Moritz S, Schmidt C, Bucher M et al (2010) Neuromonitoring in carotid surgery: are the results obtained in awake patients transferable to patients under sevoflurane/fentanyl anesthesia? J Neurosurg Anesthesiol 22:288–295

    Article  PubMed  Google Scholar 

  85. Myles PS, Leslie K, Mcneil J et al (2004) Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet 363:1757–1763

    Article  PubMed  CAS  Google Scholar 

  86. Neuloh G, Pechstein U, Cedzich C et al (2004) Motor evoked potential monitoring with supratentorial surgery. Neurosurgery 54:1061–1070

    Article  PubMed  Google Scholar 

  87. Neuloh G, Schramm J (2002) Intraoperative neurophysiologic mapping and monitoring for supratentorial procedures. In: Deletis V, Shils J (Hrsg) Neurophysiology in neurosurgery – A modern intraoperative approach. Academic Press, Amsterdam, S 339–404

  88. Neuloh G, Schramm J (2005) Monitoring bei neurochirurgischen Eingriffen. In: Buchner H, Noth J (Hrsg) Evozierte Potenziale, Neurovegetative Diagnostik, Okulographie. Thieme, Stuttgart, S 156–160

  89. Neuloh G, Schramm J (2004) Monitoring of motor evoked potentials compared with somatosensory evoked potentials and microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurosurg 100:389–399

    Article  PubMed  Google Scholar 

  90. Nuwer MR, Dawson EG, Carlson LG et al (1995) Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol 96:6–11

    Article  PubMed  CAS  Google Scholar 

  91. Parker SL, Amin AG, Farber SH et al (2011) Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. J Neurosurg Spine 15:130–135

    Article  PubMed  Google Scholar 

  92. Pasternak JJ, Lanier WL (2010) Neuroanesthesiology update. J Neurosurg Anesthesiol 22:86–109

    Article  PubMed  Google Scholar 

  93. Pechstein U, Nadstawek J, Zentner J et al (1998) Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electroencephalogr Clin Neurophysiol 108:175–181

    Article  PubMed  CAS  Google Scholar 

  94. Pelosi L, Lamb J, Grevitt M et al (2002) Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol 113:1082–1091

    Article  PubMed  Google Scholar 

  95. Pelosi L, Stevenson M, Hobbs GJ et al (2001) Intraoperative motor evoked potentials to transcranial electrical stimulation during two anaesthetic regimens. Clin Neurophysiol 112:1076–1087

    Article  PubMed  CAS  Google Scholar 

  96. Prell J, Rachinger J, Scheller C et al (2010) A real-time monitoring system for the facial nerve. Neurosurgery 66:1064–1073

    Article  PubMed  Google Scholar 

  97. Rampp S, Prell J, Rachinger JC et al (2011) Does electrode placement influence quality of intraoperative monitoring in vestibular schwannoma surgery? Cen Eur Neurosurg 72:22–27

    Article  CAS  Google Scholar 

  98. Randolph GW, Dralle H, Abdullah H et al (2011) Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: international standards guideline statement. Laryngoscope 121(Suppl 1):1–16

    Article  Google Scholar 

  99. Rath G, Chandra NS (2011) Intraoperative neurophysiological monitoring by anesthesiologists. Minerva Anestesiol 77:857–858

    PubMed  CAS  Google Scholar 

  100. Raynor BL, Lenke LG, Bridwell KH et al (2007) Correlation between low triggered electromyographic thresholds and lumbar pedicle screw malposition: analysis of 4857 screws. Spine 32:2673–2678

    Article  PubMed  Google Scholar 

  101. Rehberg B, Ruschner R, Fischer M et al (1998) Konzentrationsabhängige Veränderungen der Latenz und Amplitude somatosensorisch evozierter Potentiale durch Desfluran, Isofluran und Sevofluran. Anasthesiol Intensivmed Notfallmed Schmerzther 33:425–429

    Article  PubMed  CAS  Google Scholar 

  102. Richards CD (1983) Actions of general anaesthetics on synaptic transmission in the CNS. Br J Anaesth 55:201–207

    Article  PubMed  CAS  Google Scholar 

  103. Rowed DW, Houlden DA, Burkholder LM et al (2004) Comparison of monitoring techniques for intraoperative cerebral ischemia. Can J Neurol Sci 31:347–356

    PubMed  Google Scholar 

  104. Rundshagen I, Kox WJ (2004) Innovatives Neuromonitoring in der Gefäß- und Neurochirurgie. Anasthesiol Intensivmed Notfallmed Schmerzther 39:106–107

    Article  PubMed  CAS  Google Scholar 

  105. Russ W, Fraedrich G, Hehrlein FW et al (1985) Intraoperative somatosensory evoked potentials as a prognostic factor of neurologic state after carotid endarterectomy. Thorac Cardiovasc Surg 33:392–396

    Article  PubMed  CAS  Google Scholar 

  106. Rytky S, Huotari AM, Alahuhta S et al (1999) Tibial nerve somatosensory evoked potentials during EEG suppression in sevoflurane anaesthesia. Clin Neurophysiol 110:1655–1658

    Article  PubMed  CAS  Google Scholar 

  107. Sala F, Beltramello A, Gerosa M (2007) Neuroprotective role of neurophysiological monitoring during endovascular procedures in the brain and spinal cord. Neurophysiol Clin 37:415–421

    Article  PubMed  CAS  Google Scholar 

  108. Sala F, Bricolo A, Faccioli F et al (2007) Surgery for intramedullary spinal cord tumors: the role of intraoperative (neurophysiological) monitoring. Eur Spine J 16(Suppl 2):S130–S139

    Article  PubMed  Google Scholar 

  109. Sala F, Manganotti P, Tramontano V et al (2007) Monitoring of motor pathways during brain stem surgery: what we have achieved and what we still miss? Neurophysiol Clin 37:399–406

    Article  PubMed  CAS  Google Scholar 

  110. Sala F, Palandri G, Basso E et al (2006) Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery 58:1129–1143; discussion 1129–1143

    Article  PubMed  Google Scholar 

  111. Samra SK, Dy EA, Welch KB et al (2001) Remifentanil- and fentanyl-based anesthesia for intraoperative monitoring of somatosensory evoked potentials. Anesth Analg 92:1510–1515

    Article  PubMed  CAS  Google Scholar 

  112. Samra SK, Sorkin LS (1991) Enhancement of somatosensory evoked potentials by etomidate in cats: an investigation of its site of action. Anesthesiology 74:499–503

    Article  PubMed  CAS  Google Scholar 

  113. Samra SK, Vanderzant CW, Domer PA et al (1987) Differential effects of isoflurane on human median nerve somatosensory evoked potentials. Anesthesiology 66:29–35

    Article  PubMed  CAS  Google Scholar 

  114. Sarnthein J, Bozinov O, Melone AG et al (2011) Motor-evoked potentials (MEP) during brainstem surgery to preserve corticospinal function. Acta Neurochir 153:1753–1759

    Article  Google Scholar 

  115. Sbarigia E, Schioppa A, Misuraca M et al (2001) Somatosensory evoked potentials versus locoregional anaesthesia in the monitoring of cerebral function during carotid artery surgery: preliminary results of a prospective study. Eur J Vasc Endovasc Surg 21:413–416

    Article  PubMed  CAS  Google Scholar 

  116. Scheufler KM, Thees C, Nadstawek J et al (2003) S(+)-ketamine attenuates myogenic motor-evoked potentials at or distal to the spinal alpha-motoneuron. Anesth Analg 96:238–244

    PubMed  CAS  Google Scholar 

  117. Schindler E, Muller M, Zickmann B et al (1998) Modulation of somatosensory evoked potentials under various concentrations of desflurane with and without nitrous oxide. J Neurosurg Anesthesiol 10:218–223

    PubMed  CAS  Google Scholar 

  118. Schmidt GN, Scharein E, Siegel M et al (2007) Identification of sensory blockade by somatosensory and pain-induced evoked potentials. Anesthesiology 106:707–714

    Article  PubMed  CAS  Google Scholar 

  119. Schweiger H, Kamp HD, Dinkel M (1991) Somatosensory-evoked potentials during carotid artery surgery: experience in 400 operations. Surgery 109:602–609

    PubMed  CAS  Google Scholar 

  120. Seyal M, Mull B (2002) Mechanisms of signal change during intraoperative somatosensory evoked potential monitoring of the spinal cord. J Clin Neurophysiol 19:409–415

    Article  PubMed  Google Scholar 

  121. Sinha AC, Cheung AT (2010) Spinal cord protection and thoracic aortic surgery. Curr Opin Anaesthesiol 23:95–102

    Article  PubMed  Google Scholar 

  122. Sloan MA (2006) Prevention of ischemic neurologic injury with intraoperative monitoring of selected cardiovascular and cerebrovascular procedures: roles of electroencephalography, somatosensory evoked potentials, transcranial Doppler, and near-infrared spectroscopy. Neurol Clin 24:631–645

    Article  PubMed  Google Scholar 

  123. Sloan TB (2002) Anesthesia and motor evoked potential monitoring. In: Deletis V, Shils J (Hrsg) Neurophysiology in neurosurgery – a modern intraoperative approach. Academic Press, Amsterdam, S 451–474

  124. Sloan TB (2002) Anesthetics and the brain. Anesthesiol Clin North America 20:265–292

    Article  PubMed  CAS  Google Scholar 

  125. Sloan TB, Fugina ML, Toleikis JR (1990) Effects of midazolam on median nerve somatosensory evoked potentials. Br J Anaesth 64:590–593

    Article  PubMed  CAS  Google Scholar 

  126. Sloan TB, Heyer EJ (2002) Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J Clin Neurophysiol 19:430–443

    Article  PubMed  Google Scholar 

  127. Sloan TB, Ronai AK, Toleikis JR et al (1988) Improvement of intraoperative somatosensory evoked potentials by etomidate. Anesth Analg 67:582–585

    PubMed  CAS  Google Scholar 

  128. Stöhr M (2005) Somatosensible Reizantworten von Nerven, Rückenmark und Gehirn (SEP). In: Stöhr M, Dichigans J, Buettner UW, Hess CW (Hrsg) Evozierte Potenziale. Springer, Berlin Heidelberg New York Tokio, S 21–252

  129. Süss O, Brock M, Kombos T (2005) Elektrophysiologische Überwachung motorischer Nervenwurzelaktivität während der perkutanen transforaminalen Sequestrektomie bei intra- und extraforaminalen Bandscheibenvorfällen unter Vollnarkose. Zentralbl Neurochir 66:190–201

    Article  Google Scholar 

  130. Süss O, Süss S, Brock M et al (2006) Intraoperative electrocortical stimulation of Brodman area 4: a 10-year analysis of 255 cases. Head Face Med 2:20

    Article  Google Scholar 

  131. Sutter M, Deletis V, Dvorak J et al (2007) Current opinions and recommendations on multimodal intraoperative monitoring during spine surgeries. Eur Spine J 16(Suppl 2):232–237

    Article  Google Scholar 

  132. Sutter M, Eggspuehler A, Grob D et al (2007) The diagnostic value of multimodal intraoperative monitoring (MIOM) during spine surgery: a prospective study of 1,017 patients. Eur Spine J 16(Suppl 2):162–170

    Article  Google Scholar 

  133. Szelenyi A, Bello L, Duffau H et al (2010) Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus 28:E7

    Article  PubMed  Google Scholar 

  134. Szelenyi A, Hattingen E, Weidauer S et al (2010) Intraoperative motor evoked potential alteration in intracranial tumor surgery and its relation to signal alteration in postoperative magnetic resonance imaging. Neurosurgery 67:302–313

    Article  PubMed  Google Scholar 

  135. Szelenyi A, Joksimovic B, Seifert V (2007) Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J Clin Neurophysiol 24:39–43

    Article  PubMed  Google Scholar 

  136. Szelenyi A, Langer D, Kothbauer K et al (2006) Monitoring of muscle motor evoked potentials during cerebral aneurysm surgery: intraoperative changes and postoperative outcome. J Neurosurg 105:675–681

    Article  PubMed  Google Scholar 

  137. Thornton C, Creagh-Barry P, Jordan C et al (1992) Somatosensory and auditory evoked responses recorded simultaneously: differential effects of nitrous oxide and isoflurane. Br J Anaesth 68:508–514

    Article  PubMed  CAS  Google Scholar 

  138. Tobias JD, Goble TJ, Bates G et al (2008) Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Paediatr Anaesth 18:1082–1088

    Article  PubMed  Google Scholar 

  139. Toleikis JR (2002) Neurophysiological monitoring during pedicle screw placement. In: Deletis V, Shils J (Hrsg) Neurophysiology in neurosurgery – A modern intraoperative approach. Academic Press, Amsterdam, S 231–266

  140. Ubags LH, Kalkman CJ, Been HD (1998) Influence of isoflurane on myogenic motor evoked potentials to single and multiple transcranial stimuli during nitrous oxide/opioid anesthesia. Neurosurgery 43:90–94; discussion 94–95

    Article  PubMed  CAS  Google Scholar 

  141. Uribe JS, Vale FL, Dakwar E (2010) Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine 35:S368–S374

    Article  PubMed  Google Scholar 

  142. Van Dongen EP, Ter Beek HT, Schepens MA et al (1999) The influence of nitrous oxide to supplement fentanyl/low-dose propofol anesthesia on transcranial myogenic motor-evoked potentials during thoracic aortic surgery. J Cardiothorac Vasc Anesth 13:30–34

    Article  Google Scholar 

  143. Waberski TD (2005) Somatosensorisch evozierte Potenziale (SEP). In: Buchner H, Noth J (Hrsg) Evozierte Potenziale, neurovegetative Diagnostik, Okulographie. Thieme, Stuttgart, S 20–38

  144. Wang AC, Than KD, Etame AB et al (2009) Impact of anesthesia on transcranial electric motor evoked potential monitoring during spine surgery: a review of the literature. Neurosurg Focus 27:E7

    Article  PubMed  Google Scholar 

  145. Weigang E, Hartert M, Siegenthaler MP et al (2006) Perioperative management to improve neurologic outcome in thoracic or thoracoabdominal aortic stent-grafting. Ann Thorac Surg 82:1679–1687

    Article  PubMed  Google Scholar 

  146. Weigang E, Hartert M, Siegenthaler MP et al (2006) Neurophysiological monitoring during thoracoabdominal aortic endovascular stent graft implantation. Eur J Cardiothorac Surg 29:392–396

    Article  PubMed  Google Scholar 

  147. Wiedemayer H, Sandalcioglu IE, Armbruster W et al (2004) False negative findings in intraoperative SEP monitoring: analysis of 658 consecutive neurosurgical cases and review of published reports. J Neurol Neurosurg Psychiatry 75:280–286

    PubMed  CAS  Google Scholar 

  148. Yang Q, Dong H, Deng J et al (2011) Sevoflurane preconditioning induces neuroprotection through reactive oxygen species-mediated up-regulation of antioxidant enzymes in rats. Anesth Analg 112:931–937

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich auf folgende Beziehung hin: Reisekostenübernahme durch die Fa. Inomed, Emmendingen, Deutschland. Alle anderen Autoren: keine Interessenkonflikte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nitzschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitzschke, R., Hansen-Algenstaedt, N., Regelsberger, J. et al. Intraoperatives elektrophysiologisches Monitoring mit evozierten Potenzialen. Anaesthesist 61, 320–335 (2012). https://doi.org/10.1007/s00101-012-2015-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-012-2015-3

Schlüsselwörter

Keywords

Navigation