Skip to main content
Log in

Rationaler Einsatz von Sauerstoff in Anästhesie und Intensivmedizin

Rational use of oxygen in anesthesiology and intensive care medicine

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Das mit Abstand am häufigsten verwendete „Pharmakon“ in Anästhesie und Intensivmedizin ist medizinischer Sauerstoff (O2): Jeder Patient wird im Rahmen eines chirurgischen Eingriffs oder während eines Aufenthalts auf der Intensivstation mit O2 behandelt. In der Gebrauchsinformation von medizinischem O2 werden Hypoxie bzw. Hypoxämie unterschiedlichster Pathogenese als Indikation zur Applikation von O2 angeführt: Ziel ist die Steigerung entweder des arteriellen Sauerstoffpartialdrucks (paO2) als Therapie einer Hypoxie oder des arteriellen Sauerstoffgehalts (CaO2) als Therapie einer Hypoxämie. Die meisten klinischen Indikationen für die Gabe von O2 haben sich historisch entwickelt und wurden für lange Zeit nur wenig hinterfragt, da für die kurzfristige Anwendung von O2 das relevante Nebenwirkungsspektrum meistens als unwesentlich betrachtet wurde. Dementsprechend existieren auch nur für sehr wenige Bereiche randomisierte kontrollierte Studien, die nach Maßstäben der evidenzbasierten Medizin den Nutzen supraphysiologischer Konzentrationen von O2 beweisen. Seit Längerem ist bekannt, dass spezifische Einflüsse von O2 auf die Mikrozirkulation dessen Wirksamkeit im Hinblick auf die Gewebeoxygenierung in bestimmten Situationen sogar erheblich verringern können. So führt O2 zu einer arteriolären Konstriktion, die bei einer Vielzahl von Erkrankungen mit einer Einschränkung des regionalen O2-Angebots und hierbei mit einer Verschlechterung der Gewebeoxygenierung vergesellschaftet ist. Der vorliegende Beitrag hat zum Ziel, vor diesem Hintergrund den Stellenwert von O2 als Medikament in der klinischen Medizin kritisch zu bewerten.

Abstract

Oxygen (O2) is the most frequently used pharmaceutical in anesthesiology and intensive care medicine: Every patient receives O2 during surgery or during a stay in the intensive care unit. Hypoxia and hypoxemia of various origins are the most typical indications which are mentioned in the prescribing information of O2: the goal of the administration of O2 is either an increase of arterial O2 partial pressure in order to treat hypoxia, or an increase of arterial O2 content in order to treat hypoxemia. Most of the indications for O2 administration were developed in former times and have seldom been questioned from that time on as the short-term side-effects of O2 are usually considered to be of minor importance. As a consequence only a small number of controlled randomized studies exist, which can demonstrate the efficacy of O2 in terms of evidence-based medicine. However, there is an emerging body of evidence that specific side-effects of O2 result in a deterioration of the microcirculation. The administration of O2 induces arteriolar constriction which will initiate a decline of regional O2 delivery and subsequently a decline of tissue oxygenation. The aim of the manuscript presented is to discuss the significance of O2 as a pharmaceutical in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Adams HP, del Zoppo G, Alberts MJ et al (2007) Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 38:1655–1711

    Article  PubMed  Google Scholar 

  2. Anthony T, Murray BW, Sum-Ping JT et al (2010) Evaluating an evidence-based bundle for preventing surgical site infection: a randomized trial. Arch Surg 146:263–269

    PubMed  Google Scholar 

  3. Antman EM, Anbe DT, Armstrong PW et al (2004) ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction – executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Can J Cardiol 20:977–1025

    PubMed  Google Scholar 

  4. Arntz H, Bossaert LL, Danchin N, Nikolaou NI (2010) European Resuscitation Council guidelines for resuscitation 2010. Section 5. Initial management of acute coronary syndromes. Resuscitation 81:1353–1363

    Article  PubMed  Google Scholar 

  5. Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM (2003) Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med 349:959–967

    Article  PubMed  CAS  Google Scholar 

  6. Barth E, Bassi G, Maybauer DM et al (2008) Effects of ventilation with 100% oxygen during early hyperdynamic porcine fecal peritonitis. Crit Care Med 36:495–503

    Article  PubMed  CAS  Google Scholar 

  7. Belda FJ, Aguilera L, Garcia De La Asuncion J et al (2005) Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA 294:2035–2042

    Article  PubMed  CAS  Google Scholar 

  8. Berger MM, Huhn R, Oei GT et al (2010) Hypoxia induces late preconditioning in the rat heart in vivo. Anesthesiology 113:1351–1360

    Article  PubMed  Google Scholar 

  9. Bigdeli MR, Rasoulian B, Meratan AA (2009) In vivo normobaric hyperoxia preconditioning induces different degrees of antioxidant enzymes activities in rat brain tissue. Eur J Pharmacol 611:22–29

    Article  PubMed  CAS  Google Scholar 

  10. Brücken A, Kaab AB, Kottmann K et al (2010) Reducing the duration of 100% oxygen ventilation in the early reperfusion period after cardiopulmonary resuscitation decreases striatal brain damage. Resuscitation 81:1605–1606

    Article  Google Scholar 

  11. Buras J (2000) Basic mechanisms of hyperbaric oxygen in the treatment of ischemia-reperfusion injury. Int Anesth Clin 38:91–109

    Article  CAS  Google Scholar 

  12. Buras JA, Holt D, Orlow D et al (2006) Hyperbaric oxygen protects from sepsis mortality via an interleukin-10-dependent mechanism. Crit Care Med 34:2624–2629

    Article  PubMed  CAS  Google Scholar 

  13. Cabello JB, Burls A, Emparanza JI et al (2010) Oxygen therapy for acute myocardial infarction. Cochrane Database Syst Rev (Online) 6:CD007160-CD007160

    Google Scholar 

  14. Chen ML, Guo L, Smith LEH et al (2010) High or low oxygen saturation and severe retinopathy of prematurity: a meta-analysis. Pediatrics 125:e1483–e1492

    Article  PubMed  Google Scholar 

  15. Clark JM, Lambertsen CJ (1971) Rate of development of pulmonary O2 toxicity in man during O2 breathing at 2.0 Ata. J Appl Physiol 30:739–752

    PubMed  CAS  Google Scholar 

  16. Davis WB, Rennard SI, Bitterman PB, Crystal RG (1983) Pulmonary oxygen toxicity. Early reversible changes in human alveolar structures induced by hyperoxia. N Engl J Med 309:878–883

    Article  PubMed  CAS  Google Scholar 

  17. Deakin CD, Nolan JP, Soar J et al (2010) European Resuscitation Council guidelines for resuscitation 2010. Section 4. Adult advanced life support. Resuscitation 81:1305–1352

    Article  PubMed  Google Scholar 

  18. Doss DN, Estafanous FG, Ferrario CM et al (1995) Mechanism of systemic vasodilation during normovolemic hemodilution. Anesth Analg 81:30–34

    Article  PubMed  CAS  Google Scholar 

  19. Edmark L, Auner U, Enlund M et al (2010) Oxygen concentration and characteristics of progressive atelectasis formation during anaesthesia. Acta Anaesth Scand 55:75–81

    Article  PubMed  Google Scholar 

  20. Endo Y, Shimizu T, Mori T et al (2003) Hyperoxic condition prevents bacterial translocation and elevation of plasma microorganism components during hemorrhagic shock. J Invest Surg 16:275–281

    PubMed  Google Scholar 

  21. Greif R, Akca O, Horn EP et al (2000) Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N Engl J Med 342:161–167

    Article  PubMed  CAS  Google Scholar 

  22. Habler O, Kleen M, Kemming G, Zwissler B (2002) Hyperoxia in extreme hemodilution. Eur Surg Res 34:181–187

    Article  PubMed  CAS  Google Scholar 

  23. Habler O, Meier J, Pape A et al (2006) Tolerance to perioperative anemia mechanisms, influencing factors and limits. Anaesthesist 55:1142–1156

    Article  PubMed  CAS  Google Scholar 

  24. Habler O, Messmer K (1998) Hyperoxaemia in extreme haemodilution. Br J Anaesth 81 (Suppl 1):79–82

    PubMed  Google Scholar 

  25. Habler O, Voss B (2010) Perioperative management of Jehovah’s Witness patients. Special consideration of religiously motivated refusal of allogeneic blood transfusion. Anaesthesist 59:297–311

    Article  PubMed  CAS  Google Scholar 

  26. Habler OP, Kleen MS, Hutter JW et al (1998) Effects of hyperoxic ventilation on hemodilution-induced changes in anesthetized dogs. Transfusion 38:135–144

    Article  PubMed  CAS  Google Scholar 

  27. Hachenberg T, Senturk M, Jannasch O, Lippert H (2010) Postoperative wound infections. pathophysiology, risk factors and preventive concepts. Anaesthesist 59:851–866

    Article  PubMed  CAS  Google Scholar 

  28. Hedenstierna G, Edmark L (2010) Mechanisms of atelectasis in the perioperative period. Best Pract Res Clin Anaesth 24:157–169

    Article  Google Scholar 

  29. Henninger N, Bouley J, Nelligan JM et al (2007) Normobaric hyperoxia delays perfusion/diffusion mismatch evolution, reduces infarct volume, and differentially affects neuronal cell death pathways after suture middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 27:1632–1642

    Article  PubMed  Google Scholar 

  30. Hutter J, Habler O, Kleen M et al (1999) Effect of acute normovolemic hemodilution on distribution of blood flow and tissue oxygenation in dog skeletal muscle. J Appl Physiol 86:860–866

    PubMed  CAS  Google Scholar 

  31. Ihnken K, Winkler A, Schlensak C et al (1998) Normoxic cardiopulmonary bypass reduces oxidative myocardial damage and nitric oxide during cardiac operations in the adult. J Thorac Cardiovasc Surg 116:327–334

    Article  PubMed  CAS  Google Scholar 

  32. Kaljusto M, Stenslokken K, Mori T et al (2008) Preconditioning effects of steroids and hyperoxia on cardiac ischemia-reperfusion injury and vascular reactivity. Eur J Cardiothorac Surg 33:355–363

    Article  PubMed  Google Scholar 

  33. Kemming GI, Meisner FG, Kleen M et al (2003) Hyperoxic ventilation at the critical haematocrit. Resuscitation 56:289–297

    Article  PubMed  CAS  Google Scholar 

  34. Kilgannon JH, Jones AE, Shapiro NI et al (2010) Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA 303:2165–2171

    Article  PubMed  CAS  Google Scholar 

  35. Kleen M, Habler O, Hutter J et al (1998) Hemodilution and hyperoxia locally change distribution of regional pulmonary perfusion in dogs. Am J Physiol 274:H520–H528

    PubMed  CAS  Google Scholar 

  36. Kleen M, Messmer K (1999) Toxicity of high PaO2. Minerva Anestesiol 65:393–396

    PubMed  CAS  Google Scholar 

  37. Kunert MP, Roman RJ, Alonso-Galicia M et al (2001) Cytochrome p-450 omega-hydroxylase: a potential O(2) sensor in rat arterioles and skeletal muscle cells. Am J Physiol Heart Circ Physiol 280:H1840–H1845

    PubMed  CAS  Google Scholar 

  38. Lauscher P, Kertscho H, Meissner A et al (2011) Hyperoxic ventilation improves survival in pigs during endotoxaemia at the critical hemoglobin concentration. Resuscitation 82:473–480

    Article  PubMed  CAS  Google Scholar 

  39. Leigh JM (1974) Early treatment with oxygen. The Pneumatic Institute and the panaceal literature of the nineteenth century. Anaesthesia 29:194–208

    Article  PubMed  CAS  Google Scholar 

  40. Lipinski CA, Hicks SD, Callaway CW (1999) Normoxic ventilation during resuscitation and outcome from asphyxial cardiac arrest in rats. Resuscitation 42:221–229

    Article  PubMed  CAS  Google Scholar 

  41. Liu Y, Rosenthal RE, Haywood Y et al (1998) Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke 29:1679–1686

    PubMed  CAS  Google Scholar 

  42. Lumb AB (2007) Just a little oxygen to breathe as you go off to sleep … is it always a good idea? Br J Anaesth 99:769–771

    Article  PubMed  CAS  Google Scholar 

  43. Magnoni S, Ghisoni L, Locatelli M et al (2003) Lack of improvement in cerebral metabolism after hyperoxia in severe head injury: a microdialysis study. J Neurosurg 98:952–958

    Article  PubMed  Google Scholar 

  44. Maroko PR, Radvany P, Braunwald E, Hale SL (1975) Reduction of infarct size by oxygen inhalation following acute coronary occlusion. Circulation 52:360–368

    PubMed  CAS  Google Scholar 

  45. McNulty PH, Robertson BJ, Tulli MA et al (2007) Effect of hyperoxia and vitamin C on coronary blood flow in patients with ischemic heart disease. J Appl Physiol 102:2040–2045

    Article  PubMed  Google Scholar 

  46. Meier J, Kemming G, Meisner F et al (2005) Hyperoxic ventilation enables hemodilution beyond the critical myocardial hemoglobin concentration. Eur J Med Res 10:462–468

    PubMed  CAS  Google Scholar 

  47. Meier J, Kemming GI, Kisch-Wedel H et al (2004) Hyperoxic ventilation reduces six-hour mortality after partial fluid resuscitation from hemorrhagic shock. Shock 22:240–247

    Article  PubMed  Google Scholar 

  48. Meier J, Kemming GI, Kisch-Wedel H et al (2004) Hyperoxic ventilation reduces 6-hour mortality at the critical hemoglobin concentration. Anesthesiology 100:70–76

    Article  PubMed  CAS  Google Scholar 

  49. Meier J, Pape A, Lauscher P et al (2005) Hyperoxia in lethal methemoglobinemia: effects on oxygen transport, tissue oxygenation, and survival in pigs. Crit Care Med 33:1582–1588

    Article  PubMed  CAS  Google Scholar 

  50. Meyhoff CS, Wetterslev J, Jorgensen LN et al (2009) Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA 302:1543–1550

    Article  PubMed  CAS  Google Scholar 

  51. Moradkhan R, Sinoway LI (2010) Revisiting the role of oxygen therapy in cardiac patients. J Am Coll Cardiol 56:1013–1016

    Article  PubMed  Google Scholar 

  52. Nathan C (2003) Oxygen and the inflammatory cell. Nat Immunol 422:675–676

    CAS  Google Scholar 

  53. Nortje J, Coles JP, Timofeev I et al (2008) Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med 36:273–281

    Article  PubMed  CAS  Google Scholar 

  54. Pape A, Meier J, Kertscho H et al (2006) Hyperoxic ventilation increases the tolerance of acute normovolemic anemia in anesthetized pigs. Crit Care Med 34:1475–1482

    Article  PubMed  CAS  Google Scholar 

  55. Pasgaard T, Stankevicius E, Jorgensen MM et al (2007) Hyperoxia reduces basal release of nitric oxide and contracts porcine coronary arteries. Acta Physiol 191:285–296

    Article  CAS  Google Scholar 

  56. Pourkhalili K, Hajizadeh S, Tiraihi T et al (2009) Ischemia and reperfusion-induced arrhythmias: role of hyperoxic preconditioning. J Cardiovasc Med 10:635–642

    Article  Google Scholar 

  57. Pryor KO, Fahey TJ, Lien CA, Goldstein PA (2004) Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA 291:79–87

    Article  PubMed  CAS  Google Scholar 

  58. Qadan M, Akca O, Mahid SS et al (2009) Perioperative supplemental oxygen therapy and surgical site infection: a meta-analysis of randomized controlled trials. Arch Surg 144:359–366

    Article  PubMed  Google Scholar 

  59. Qadan M, Battista C, Gardner SA et al (2010) Oxygen and surgical site infection: a study of underlying immunologic mechanisms. Anesthesiology 113:369–377

    Article  PubMed  Google Scholar 

  60. Rabi Y, Rabi D, Yee W (2007) Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. Resuscitation 72:353–363

    Article  PubMed  Google Scholar 

  61. Rawles JM, Kenmure AC (1976) Controlled trial of oxygen in uncomplicated myocardial infarction. Br Med J 1:1121–1123

    Article  PubMed  CAS  Google Scholar 

  62. Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82:131–185

    PubMed  CAS  Google Scholar 

  63. Ronning OM, Guldvog B (1999) Should stroke victims routinely receive supplemental oxygen? A quasi-randomized controlled trial. Stroke 30:2033–2037

    PubMed  CAS  Google Scholar 

  64. Rossaint R, Bouillon B, Cerny V et al (2010) Management of bleeding following major trauma: an updated European guideline. Crit Care 14:R52–R52

    Article  PubMed  Google Scholar 

  65. Rothen HU, Sporre B, Engberg G et al (1995) Prevention of atelectasis during general anaesthesia. Lancet 345:1387–1391

    Article  PubMed  CAS  Google Scholar 

  66. Rubanyi G, Paul RJ (1985) Two distinct effects of oxygen on vascular tone in isolated porcine coronary arteries. Circ Res 56:1–10

    PubMed  CAS  Google Scholar 

  67. Sanders RD, Manning HJ, Robertson NJ et al (2010) Preconditioning and postinsult therapies for perinatal hypoxic-ischemic injury at term. Anesthesiology 113:233–249

    Article  PubMed  Google Scholar 

  68. Sessler DI, Akca O (2002) Nonpharmacological prevention of surgical wound infections. Clin Infect Dis 35:1397–1404

    Article  PubMed  Google Scholar 

  69. Singhal AB, Benner T, Roccatagliata L et al (2005) A pilot study of normobaric oxygen therapy in acute ischemic stroke. Stroke 36:797–802

    Article  PubMed  Google Scholar 

  70. Smerz RW (2004) Incidence of oxygen toxicity during the treatment of dysbarism. Undersea Hyperb Med 31:199–202

    PubMed  CAS  Google Scholar 

  71. Smith WD (1972) A history of nitrous oxide and oxygen anaesthesia. The discovery of nitrous oxide and of oxygen. Br J Anaesth 44:297–304

    Article  PubMed  CAS  Google Scholar 

  72. Sukhotnik I, Brod V, Lurie M et al (2009) The effect of 100% oxygen on intestinal preservation and recovery following ischemia-reperfusion injury in rats. Crit Care Med 37:1054–1061

    Article  PubMed  CAS  Google Scholar 

  73. Sukhotnik I, Krausz MM, Brod V et al (2002) Divergent effects of oxygen therapy in four models of uncontrolled hemorrhagic shock. Shock 18:277–284

    Article  PubMed  Google Scholar 

  74. Tolias CM, Reinert M, Seiler R et al (2004) Normobaric hyperoxia-induced improvement in cerebral metabolism and reduction in intracranial pressure in patients with severe head injury: a prospective historical cohort-matched study. J Neurosurg 101:435–444

    Article  PubMed  Google Scholar 

  75. Tsai AG, Cabrales P, Winslow RM, Intaglietta M (2003) Microvascular oxygen distribution in awake hamster window chamber model during hyperoxia. Am J Physiol Heart Circ Physiol 285:H1537–H1545

    PubMed  CAS  Google Scholar 

  76. Tune JD, Richmond KN, Gorman MW, Feigl EO (2002) Control of coronary blood flow during exercise. Exp Biol Med 227:238–250

    CAS  Google Scholar 

  77. Ukholkina GB, Kostianov II, Kuchkina NV et al (2005) Effect of oxygenotherapy used in combination with reperfusion in patients with acute myocardial infarction. Kardiologiia 45:59–59

    PubMed  CAS  Google Scholar 

  78. Brink WA van den, Santbrink H van, Steyerberg EW et al (2000) Brain oxygen tension in severe head injury. Neurosurgery 46:868–876

    Article  PubMed  Google Scholar 

  79. Waisman D, Brod V, Wolff R et al (2003) Effects of hyperoxia on local and remote microcirculatory inflammatory response after splanchnic ischemia and reperfusion. Am J Physiol Heart Circ Physiol 285:H643–H652

    PubMed  CAS  Google Scholar 

  80. Walson KH, Tang M, Glumac A et al (2011) Normoxic versus hyperoxic resuscitation in pediatric asphyxial cardiac arrest: effects on oxidative stress. Crit Care Med 39:335–343

    Article  PubMed  CAS  Google Scholar 

  81. Welsh DG, Jackson WF, Segal SS (1998) Oxygen induces electromechanical coupling in arteriolar smooth muscle cells: a role for l-type Ca2+ channels. Am J Physiol 274:H2018–H2024

    PubMed  CAS  Google Scholar 

  82. Wijesinghe M, Perrin K, Ranchord A et al (2009) Routine use of oxygen in the treatment of myocardial infarction: systematic review. Heart 95:198–202

    Article  PubMed  CAS  Google Scholar 

  83. Wilson AT, Channer KS (1997) Hypoxaemia and supplemental oxygen therapy in the first 24 hours after myocardial infarction: the role of pulse oximetry. J R Coll Phys Lond 31:657–661

    CAS  Google Scholar 

  84. Winegrad S, Henrion D, Rappaport L, Samuel JL (1999) Self-protection by cardiac myocytes against hypoxia and hyperoxia. Circ Res 85:690–698

    PubMed  CAS  Google Scholar 

  85. Zwemer CF, Whitesall SE, D’Alecy LG (1994) Cardiopulmonary-cerebral resuscitation with 100% oxygen exacerbates neurological dysfunction following nine minutes of normothermic cardiac arrest in dogs. Resuscitation 27:159–170

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Meier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, J., Habler, O. Rationaler Einsatz von Sauerstoff in Anästhesie und Intensivmedizin. Anaesthesist 60, 292–302 (2011). https://doi.org/10.1007/s00101-011-1888-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-011-1888-x

Schlüsselwörter

Keywords

Navigation