Skip to main content
Log in

Die transthorakale Defibrillation

Physiologische und pathophysiologische Grundlagen und deren Bedeutung für den Reanimationserfolg

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die frühzeitige transthorakale Defibrillation ist ein wichtiges Glied in der Kette der lebenserhaltenden Erstmaßnahmen zur Beendigung eines bestehenden Kammerflimmerns/-flatterns (KF). Entscheidend für den Defibrillationserfolg ist der Stromfluss durch eine kritische Herzmuskelmasse. Bei zu geringem Strom erfolgt keine Rhythmuskonversion; ein zu hoher Strom kann jedoch Myokardschäden induzieren. Durch unterschiedlich hohe transthorakale Widerstände wird die am Herz wirkende Stromstärke erheblich beeinflusst. Ein optimierter Strom muss deshalb, vergleichbar zu anderen Therapieverfahren, auch für die transthorakale Defibrillation patientenabhängig individuell ermittelt werden, um Unter- oder Überschreitungen zu verhindern. Der Einsatz biphasischer gegenüber monophasischen Impulsformen ermöglicht bei geringerem Strom eine Rhythmuskonversion mit gleich hoher (bzw. höherer) Effizienz. Hierdurch können mögliche strominduzierte Myokardschäden deutlich reduziert werden. Auch bei individuell unterschiedlicher Thoraximpedanz kann durch biphasische Impulsform in Verbindung mit einer geräteseitigen Impedanzkompensation eine effiziente Rhythmuskonversion erfolgen. Der optimale Zeitpunkt einer Defibrillation im Rahmen einer Reanimation muss neu definiert werden. Entsprechend der unterschiedlichen Entstehungsmechanismen des KF (elektrisch induziert oder spontan auf dem Boden einer Herzerkrankung entstanden) ist die Wahrscheinlichkeit einer erfolgreichen Rhythmuskonversion durch einen Defibrillationsimpuls ebenfalls unterschiedlich. Zur besseren Vergleichbarkeit zukünftiger Studien sollte eine einheitliche Definition des Defibrillationserfolges in Abhängigkeit vom nachfolgenden hämodynamisch wirksamen Herzrhythmus festgelegt werden. Der zur biphasischen Konversion benötigte geringere Strom erlaubt eine weitere Miniaturisierung der Defibrillatoren. Dies ermöglicht in Verbindung mit einer hoch sensitiven automatischen Rhythmusanalyse eine weitere Verbreitung (halb)automatischer Defibrillatoren in der Öffentlichkeit. Hierdurch kann ein wichtiges Glied in der Kette der lebenserhaltenden Erstmaßnahmen gestärkt werden.

Abstract

As one major link in the chain of survival, early transthoracic (external) cardiac defibrillation is aimed at the termination of ventricular flutter and ventricular fibrillation. Most important to the success of defibrillation is the passage of a defined amount of current through a critical mass of heart muscle. Different transthoracic resistances reduce the effective density of the current within the heart. As for other therapeutic intervention procedures, recommendations for the optimal strength of current to be applied to the fibrillating heart need to be evaluated and defined for therapeutical defibrillation too. Unnecessarily high current density causes damage to the heart and should be prevented. By using biphasic waveforms in contrast to monophasic impulses, the amount of current can be reduced but the same or even higher efficacy is attained. Therefore possible myocardial damage might be clearly reduced. Even with individually altered thoracic impedance effective conversion of cardiac rhythm can be achieved by device-controlled compensation and biphasic waveforms. According to their different mechanisms or origin (electrically induced or spontaneously caused by organic heart desease) the probability of successful conversion of the cardiac rhythm by one single electrical impulse varies. The optimum point in time for defibrillation during resuscitation needs to be redefined. In order to improve comparability, further studies should use standardized definitions for successful defibrillation relating to the resulting cardiac rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Achleitner U, Rheinberger K, Furtner B, Amann A, Baubin M (2001) Waveform analysis of biphasic external defibrillators. Resuscitation 50:61–70

    Article  CAS  PubMed  Google Scholar 

  2. Alem AP van, Chapman FW, Lank P, Hart AA, Koster RW (2003) A prospective, randomised and blinded comparison of first shock success of monophasic and biphasic waveforms in out-of-hospital cardiac arrest. Resuscitation 58:17–24

    Article  PubMed  Google Scholar 

  3. Amann A, Mayr G, Strohmenger HU (2000) N(α)-histogram analysis of the ventricular fibrillation ECG-signal as predictor of countershock success. Chaos Solitons Fractals 11:1205–1212

    Article  Google Scholar 

  4. Amann A, Achleitner U, Antretter H et al. (2001) Analysing ventricular fibrillation ECG-signals and predicting defibrillation success during cardiopulmonary resuscitation employing N(α) histograms. Resuscitation 50:77–85

    Article  CAS  PubMed  Google Scholar 

  5. Amann A, Rheinberger K, Achleitner U, Krismer AC, Lingnau W, Lindner KH, Wenzel V (2002) The prediction of defibrillation outcome using a new combination of mean frequency and amplitude in porcine models of cardiac arrest. Anesth Analg 95:716–722

    PubMed  Google Scholar 

  6. American Heart Association (2000) Standards and guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiac care (ECC). JAMA 255:2905–2989

    Google Scholar 

  7. Anderson GJ, Suelzer JS (1976) The efficacy of trapezoidal wave forms for ventricular defibrillation. Chest 70:298–300

    CAS  PubMed  Google Scholar 

  8. Atkins DL, Hartley LL, York DK (1998) Accurate recognition and effective treatment of ventricular fibrillation by automated external defibrillators in adolescents. Pediatrics 101:393–397

    CAS  PubMed  Google Scholar 

  9. Babbs CF, Tacker WA, Fleet JF van, Bourland JD, Geddes LA (1980) Therapeutic indices for transchest defibrillator shocks: effective, damaging, and lethal electrical doses. Am Heart J 99:734–738

    CAS  PubMed  Google Scholar 

  10. Bain AC, Swerdlow CD, Love CJ et al. (2001) Multicenter study of principles-based waveforms for external defibrillation. Ann Emerg Med 37:5-12

    Article  CAS  PubMed  Google Scholar 

  11. Bardy GH, Gliner BE, Kudenchuk PJ et al. (1995) Truncated biphasic pulse for transthoracic defibrillation. Circulation 91:1768–1774

    CAS  PubMed  Google Scholar 

  12. Bardy GH, Marchlinski FE, Sharma AD et al. (1996) Multicenter comparison of truncated biphasic shock and standard damped sine wave monophasic shocks for transthoracic ventricular defibrillation. Circulation 94:2507–2514

    CAS  PubMed  Google Scholar 

  13. Bardy GH, Gliner BE, White RD (1997) Comparison of human defibrillation efficacy rates in short-duration and long-duration ventricular fibrillation using monophasic and biphasic transthoracic shocks. Circulation 96 [Suppl 1]:560

  14. Beck CS, Pritchard WH, Feil HS (1947) Ventricular fibrillation of long duration abolished by electric shock. JAMA 135:985–986

    Google Scholar 

  15. Behr JC, Hartley LL, York DK, Brown DD, Kerber RE (1996) Truncated exponential versus damped sinusoidal waveform shocks for transthoracic defibrillation. Am J Cardiol 78:1242–1245

    Article  CAS  PubMed  Google Scholar 

  16. Behrens S, Li C, Kirchhof P, Fabritz FL, Franz MR (1996) Reduced arrhythmogenicity of biphasic versus monophasic T-wave shocks. Implication for defibrillation efficacy. Circulation 94:1974–1980

    CAS  PubMed  Google Scholar 

  17. Bossaert LL (1997) Fibrillation and defibrillation of the heart. Br J Anaesth 79:203–213

    CAS  PubMed  Google Scholar 

  18. Campbell NP, Webb SW, Adgey AA, Pantridge JF (1977) Transthoracic ventricular defibrillation in adults. BMJ 26:1379–1381

    Google Scholar 

  19. Cansell A (1998) Wirksamkeit und Sicherheit neuer Impulskurvenformen bei transthorakaler Defibrillation. Notfall Rettungsmed 1:372–380

    Article  Google Scholar 

  20. Caterine MR, Spencer KT, Pagan-Carlo LA, Smith RS, Buettner GR, Kerber RE (1996) Direct current shocks to the heart generate free radicals: an electron paramagnetic resonance study. J Am Coll Cardiol 28:1598–1609

    Article  CAS  PubMed  Google Scholar 

  21. Cecchin F, Jorgenson BD, Berul CI et al. (2001) Is arrhythmia detection by automatic external defibrillator accurate for children? Circulation 103:2483–2488

    CAS  PubMed  Google Scholar 

  22. Chamberlain D, Handley AJ, Colquhoun M (2003) Time for change? Resuscitation 58:237–247

    Article  PubMed  Google Scholar 

  23. Cobb LA, Fahrenbruch CE, Walsh TR, Copass MK, Olsufka M, Breskin M, Hallstrom AP (1999) Influence of cardiopulmonary resuscitation prior to defibrillation in patients with out-of-hospital ventricular fibrillation. JAMA 281:1182–1188

    Article  PubMed  Google Scholar 

  24. Cobb LA, Fahrenbruch CE, Olsufka M, Copass MK (2002) Changing incidence of out-of-hospital ventricular fibrillation 1980–2000. JAMA 288:3008–3013

    Article  PubMed  Google Scholar 

  25. Cruz B, Niemann JT (2000) Experimental studies on precordial compression or defibrillation as initial interventions for ventricular fibrillation. Crit Care Med 28:225–227

    Article  Google Scholar 

  26. Cummins RO, Eisenberg M, Bergner L, Murray JA (1984) Sensitivity, accuracy, and safety of an automatic external defibrillator. Lancet 2:318–320

    Article  CAS  PubMed  Google Scholar 

  27. Cummins RO, Stults KR, Haggar B, Kerber RE, Schaeffer S, Brown DD (1988) A new rhythm library for testing automatic external defibrillators: performance of three devices. J Am Coll Cardiol 11:597–602

    CAS  PubMed  Google Scholar 

  28. Cummins RO, Ornato JP, Thies WH, Pepe PE (1991) Improving survival from sudden cardiac arrest: the „chain of survival“ concept. A statement for health professionals from the Advanced Cardiac Care Committee. American Heart Association. Circulation 83:1832–1847

    CAS  PubMed  Google Scholar 

  29. Dahl CF, Ewy GA, Warner ED, Thomas ED (1997) Myocardial necrosis from direct current countershock: effect of paddle electrode size and time interval between discharges. Circulation 50:956–961

    Google Scholar 

  30. Dalzell GWN, Cunningham SR, Anderson J, Adgey AAJ (1989) Initial experience with a microprocessor-controlled current-based defibrillator. Br Heart J 61:502–505

    CAS  PubMed  Google Scholar 

  31. Doherty PW, McLaughin PR, Billingham M, Kernoff R, Goris ML, Harrison DC (1979) Cardiac damage produced by direct current countershock applied to the heart. Am J Cardiol 43:225–232

    CAS  PubMed  Google Scholar 

  32. Faddy SC, Powell J, Craig JC (2003) Biphasic and monophasic shocks for transthoracic defibrillation: a meta analysis of randomised controlled trials. Resuscitation 58:9–16

    Article  PubMed  Google Scholar 

  33. Frenneaux M (2003) Cardiopulmonary resuscitation—some physiological considerations. Resuscitation 58:259–265

    Article  PubMed  Google Scholar 

  34. Gliner BE, Lyster TE, Dillion SM, Bardy GH (1995) Transthoracic defibrillation of swine with monophasic and biphasic waveforms. Circulation 92:1634–1643

    CAS  PubMed  Google Scholar 

  35. Gliner BE, Jorgenson DB, Poole JE et al. (1998) Treatment of out-of-hospital cardiac arrest with a low-energy impedance-compensating biphasic waveform automatic external defibrillator. Biomed Instrum Technol 32:631–644

    CAS  PubMed  Google Scholar 

  36. Greene HL, Marco JP di, Kudenchuk PJ et al. (1995) Comparison of monophasic and biphasic defibrillation pulse waveforms for transthoracic cardioversion. Am J Cardiol 75:1135–1139

    Article  CAS  PubMed  Google Scholar 

  37. Herlitz J, Andersson E, Bang A et al. (2000) Experiences from treatment of out-of-hospital arrest during 17 years in Goteborg. Eur Heart J 21:1251–1258

    Article  CAS  PubMed  Google Scholar 

  38. Herre JM, Higgins SL, Epstein AE (1998) A comparison of biphasic and monophasic shocks for external defibrillation. Prehosp Emerg Care 4:305–313

    Google Scholar 

  39. Holmberg M, Holmberg S, Herlitz J (2000) Incidence, duration and survival of ventricular fibrillation in out-of-hospital cardiac arrest patients in Sweden. Resuscitation 44:7–17

    Article  CAS  PubMed  Google Scholar 

  40. Jaggarao NS, Herber M, Grainger R, Vincent R, Chamberlain DA, Aronson AL (1982) Use of an automated external defibrillator-pacemaker by ambulance staff. Lancet 2:73–75

    Article  CAS  PubMed  Google Scholar 

  41. Jones JL, Jones RE (1983) Improved defibrillator waveform safety factor with biphasic waveforms. Am J Physiol 245:H60–65

    CAS  PubMed  Google Scholar 

  42. Jones JL, Jones RE (1984) Decreased defibrillator-induced dysfunction with biphasic rectangular waveforms. Am J Physiol 247:H792–796

    CAS  PubMed  Google Scholar 

  43. Jones JL, Tovar OH (2000) Electrophysiology of ventricular fibrillation and defibrillation. Crit Care Med 28:219–221

    Article  CAS  PubMed  Google Scholar 

  44. Kerber RE, Martins JB, Kienzle MG, Constantin L, Olshansky B, Hopson R, Charbonnier F (1988) Energy, current, and success in defibrillation and cardioversion: clinical studies using an automated impedance-based method of energy adjustment. Circulation 77:1038–1046

    CAS  PubMed  Google Scholar 

  45. Kerber RE, Becker LB, Bourland JD et al. (1997) Automatic external defibrillators for public access defibrillation: recommendations for specifying and reporting arrhythmia analysis algorithm performance, incorporating new waveforms, and enhancing safety. Biomed Instrum Technol 31:238–244

    PubMed  Google Scholar 

  46. Koning G, Veefkind AH, Schneider H (1980) Cardiac damage caused by direct application of defibrillator shocks to isolated Langendorff-perfused rabbit heart. Am Heart J 100:473–482

    CAS  PubMed  Google Scholar 

  47. Kouwenhoven WB, Milnor WR, Knickerbocker GG, Chesnut WR (1957) Closed chest defibrillation of the heart. Surgery 42:550–561

    CAS  PubMed  Google Scholar 

  48. Kudenchuk PJ, Poole JE, Dolack GL, Troutman AJ, Bardy GH (1997) Prospective evaluation of the effect of biphasic waveform defibrillation on ventricular pacing thresholds. J Cardiovasc Electrophysiol 8:485–495

    CAS  PubMed  Google Scholar 

  49. Kuisma M, Repo J, Alaspää A (2001) The incidence of out-of-hospital ventricular fibrillation in Helsinki, Finland, from 1994 to 1999. Lancet 358:473–474

    Article  CAS  PubMed  Google Scholar 

  50. Larsen MP, Eisenberg MS, Cummins RO, Hallstrom AP (1993) Predicting survival from out-of-hospital cardiac arrest: a graphic model. Ann Emerg Med 22:1652–1658

    CAS  PubMed  Google Scholar 

  51. Lederer W, Rheinberger K, Lischke V, Amann A (2003) Analyse von Flimmersignalen zur Abschätzung der Defibrillierbarkeit beim Kammerflimmern. Anaesthesiol Intensivmed Notfallmed Schmerzther (in press)

  52. Lerman BB, Marco JP di, Haines DE (1988) Current-based versus energy-based ventricular defibrillation: a prospective study. J Am Coll Cardiol 12:1259–1264

    CAS  PubMed  Google Scholar 

  53. Lown B, Neumann J, Amarasingham R, Barkovits BV (1962) Comparison of alternating current with direct current electroshock across the closed chest. Am J Cardiol 10:223–233

    CAS  PubMed  Google Scholar 

  54. Martens PR, Russel JK, Wolcke B et al. (2001) Optimal response to cardiac arrest study: defibrillation waveform effects. Resuscitation 49:233–243

    Article  CAS  PubMed  Google Scholar 

  55. Mirowski M, Reid R, Mower MM et al. (1980) Termination of malignant ventricular arrhythmias with an implanted automatic defibrillator in human beings. N Engl J Med 303:322–324

    CAS  PubMed  Google Scholar 

  56. Niemann JT, Cairns CB, Sharma J, Lewis RJ (1992) Treatment of prolonged ventricular fibrillation: immediate countershock versus high-dose epinephrine and CPR preceding countershock. Circulation 85:281–287

    PubMed  Google Scholar 

  57. Niemann JT, Cruz B, Garner D, Lewis RJ (2000) Immediate countershock versus cardiopulmonary resuscitation before countershock in a 5-minute swine model of ventricular fibrillation arrest. Ann Emerg Med 36:543–546

    Article  CAS  PubMed  Google Scholar 

  58. Oltman CL, Clark CB, Kane NL, Zhang Y, Gutterman DD, Dellsper KC, Kerber RE (2003) Coronary vascular dysfunction associated with direct current shock injury. Basic Res Cardiol 98:406–415

    Article  PubMed  Google Scholar 

  59. Ouyang P, Brinker JA, Bulkey BH, Jugdutt BI, Varghes PJ (1981) Ischemic ventricular fibrillation: the importance of being spontaneous. Am J Cardiol 48:455–459

    CAS  PubMed  Google Scholar 

  60. Poole JE, White RD, Kanz KG et al. (1997) Low-energy impedance-compensating biphasic waveforms terminate ventricular fibrillation at high rates in victims of out-of-hospital cardiac arrest. J Cardiovasc Electrophysiol 8:1373–1385

    CAS  PubMed  Google Scholar 

  61. Reddy RK, Gleva MJ, Gliner BE, Dolack GL, Kudenchuk PJ, Poole JE, Bardy GH (1997) Biphasic transthoracic defibrillation causes fewer ECG ST-segment changes after shock. Ann Emerg Med 30:127–134

    CAS  PubMed  Google Scholar 

  62. Samson R, Berg R, Bingham R, PALS Task Force (2003) Use of automated external defibrillators for children: an update. An advisory statement from the Pediatric Advanced Life Support Task Force, International Liaison Committee on Resuscitation. Resuscitation 57:237–243

    Article  CAS  PubMed  Google Scholar 

  63. Schneider T, Martens PR, Paschen H et al. (2000) Multicenter, randomized, controlled trial of 150-J biphasic shocks compared with 200 to 360 J monophasic shocks in the resuscitation of out-of-hospital cardiac arrest victims. Circulation 102:1780–1787

    CAS  PubMed  Google Scholar 

  64. Schuder JC, Stoeckle H, Gold JH, West JA, Keskar PY (1970) Experimental ventricular defibrillation with an automatic and completely implanted system. Trans Am Soc Artif Intern Organs 16:207–212

    CAS  PubMed  Google Scholar 

  65. Spain D, Bradess V, Mohr C (1960) Coronary atherosclerosis as a cause of unexpected and unexplained death. An autopsy study from 1949—1959. JAMA 174:384–388

    CAS  PubMed  Google Scholar 

  66. Steen S, Liao Q, Pierre L, Paskevicius A, Sjöberg T (2003) The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation 58:249–258

    Article  PubMed  Google Scholar 

  67. Stotz M, Albrecht R, Zwicker G, Drewe J, Ummenhofer W (2003) EMS defibrillation-first policy may not improve outcome in out-of-hospital cardiac arrest. Resuscitation 58:277–283

    Article  PubMed  Google Scholar 

  68. Sweeney RJ, Gill RM, Reid PR (1996) Refractory interval after transcardiac shocks during ventricular fibrillation. Circulation 94:2947–2952

    CAS  PubMed  Google Scholar 

  69. Tovar OH, Jones JL (1995) Biphasic defibrillation waveforms reduce shock-induced response duration dispersion between low and high shock intensities. Circ Res 77:430–438

    CAS  PubMed  Google Scholar 

  70. Ujhelyi MR, Schur M, Frede T, Gabel M, Markel ML (1995) Differential effects of lidocaine on defibrillation threshold with monophasic versus biphasic shock waveforms. Circulation 92:1644–1650

    CAS  PubMed  Google Scholar 

  71. Vleet JF van, Tacker WA, Geddes LA, Ferrous VJ (1978) Sequential cardiac morphologic alterations induced in dogs by single transthoracic damped sinusoidal waveform defibrillator shocks. Am J Vet Res 39:271–278

    PubMed  Google Scholar 

  72. Walcott GP, Killingworth CR, Smith WM, Idecker RE (2002) Biphasic waveform external defibrillation thresholds for spontaneous ventricular fibrillation secondary to acute ischemia. J Am Coll Cardiol 39:359–365

    Article  PubMed  Google Scholar 

  73. Wakler RG, Melnick SB, Chapman FW, Walcott GP, Schmitt PW, Idecker RE (2003) Comparison of six clinically used external defibrillators in swine. Resuscitation 57:73–83

    Article  PubMed  Google Scholar 

  74. Watson AB, Ellis MS (1994) Current and energy in external cardiac defibrillation. Australas Phys Eng Sci Med 17:206–210

    CAS  PubMed  Google Scholar 

  75. White RD (1998) External defibrillation: the need for uniformity in analyzing and reporting results. Ann Emerg Med 32:234–236

    CAS  PubMed  Google Scholar 

  76. White RD (2001) Technologic advances and program initiatives in public access defibrillation using automated external defibrillators. Curr Opin Crit Care 7:145–151

    Article  CAS  PubMed  Google Scholar 

  77. White RD (2002) New concepts in transthoracic defibrillation. Emerg Med Clin North Am 20:785–807

    PubMed  Google Scholar 

  78. White RD, Hankins DG, Atkinson EJ (2001) Patients outcome following defibrillation with a low energy biphasic truncated exponential waveform in out-of-hospital cardiac arrest. Resuscitation 49:9–14

    Article  CAS  PubMed  Google Scholar 

  79. Wik L (2003) Rediscovering the importance of chest compression to improve the outcome from cardiac arrest. Resuscitation 58:267–269

    Article  PubMed  Google Scholar 

  80. Wik L, Hansen TB, Fylling F, Steen T, Vaagenes P, Auestad BH, Steen PA (2003) Delaying defibrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: a randomized trial. JAMA 289:1389–1395

    Article  PubMed  Google Scholar 

  81. Wilson CM, Bailey A, Allen JD, Anderson J, Adgey AA (1989) Cardiac injury with damped sine and trapezoidal defibrillator waveforms. Eur J Cardiol 10:628–636

    CAS  Google Scholar 

  82. Xie J, Weil MH, Sun S, Tang W, Sato Y, Jin X, Bisera J (1997) High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 96:683–688

    CAS  PubMed  Google Scholar 

  83. Zoll DP, Linenthal AJ, Gibson W, Gibson W, Paul MH, Norman LR (1995) Termination of ventricular fibrillation in man by externally applied electric countershock. N Engl J Med 254:726–732

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Lischke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lischke, V., Kessler, P., Byhahn, C. et al. Die transthorakale Defibrillation. Anaesthesist 53, 125–136 (2004). https://doi.org/10.1007/s00101-003-0635-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-003-0635-3

Schlüsselwörter

Keywords

Navigation