Skip to main content

Advertisement

Log in

Protocols for massive blood transfusion: when and why, and potential complications

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

An update paper on massive bleeding after major trauma. A review of protocols to address massive bleeding, and its possible complications, including coagulation abnormalities, complications related to blood storage, immunosuppression and infection, lung injury associated with transfusion, and hypothermia is carried out.

Methods

Literature review and discussion with authors’ experience.

Results

Massive bleeding is an acute life-threatening complication of major trauma, and consequently its prompt diagnosis and treatment is of overwhelming importance. Treatment requires rapid surgical management together with the massive infusion of colloid and blood.

Conclusions

Since massive transfusion provokes further problems in patients who are already severely traumatized and anaemic, once this course of action has been decided upon, a profound knowledge of its potential complications, careful monitoring and proper follow-up are all essential. To diagnose this bleeding, most authors favour, as the main first choice tool, a full-body CT scan (head to pelvis), in non-critical severe trauma cases. In addition, focused abdominal sonography for trauma (FAST, an acronym that highlights the necessity of rapid performance) is a very important diagnostic test for abdominal and thoracic bleeding. Furthermore, urgent surgical intervention should be undertaken for patients with significant free intraabdominal fluid and haemodynamic instability. Although the clinical situation and the blood haemoglobin concentration are the key factors considered in this rapid decision-making context, laboratory markers should not be based on a single haematocrit value, as its sensitivity to significant bleeding may be very low. Serum lactate and base deficit are very sensitive markers for detecting and monitoring the extent of bleeding and shock, in conjunction with repeated combined measurements of prothrombin time, activated partial thromboplastin time, fibrinogen and platelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention, 2010. Deaths and Mortality. http://www.cdc.gov/nchs/fastats/deaths.htm. Accessed 13 Aug 2013.

  2. Pham HP, Shaz BH. Update on massive transfusion. Br J Anaesth. 2013;111(S1):71–82.

    Article  Google Scholar 

  3. Kautza BC, Cohen MJ, Cuschieri J, Minei JP, Brackenridge SC, Maier RV, Harbrecht BG, Moore EE, Billiar TR, Peitzman AB, Sperry JL. Changes in massive transfusion over time: an early shift in the right direction? Inflammation and the host response to injury investigators. J Trauma Acute Care Surg. 2012;72:106–11.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Probst C, Pape HC, Hildebrand F, Regel G, Mahlke L, Giannoudis P, Krettek C, Grotz MR. 30 years of polytrauma care: an analysis of the change in strategies and results of 4849 cases treated at a single institution. Injury. 2009;40:77–83.

    Article  PubMed  Google Scholar 

  5. American College of Surgeons. About Advanced Trauma Life Support. ATLS. https://www.facs.org/quality-programs/trauma/atls/about. Accessed Aug 2014.

  6. Huber-Wagner S, Lefering R, Qvick LM, Körner M, Kay MV, Pfeifer KJ, Reiser M, Mutschler W, Kanz KG, Working Group on Polytrauma of the German Trauma Society. Effect of whole-body CT during trauma resuscitation on survival: a retrospective, multicentre study. Lancet. 2009;25(373):1455–61.

    Article  Google Scholar 

  7. Sierink JC, Saltzherr TP, Reitsma JB, Van Delden OM, Luitse JS, Goslings JC. Systematic review and meta-analysis of immediate total-body computed tomography compared with selective radiological imaging of injured patients. Br J Surg. 2012;99(Suppl 1):52–8.

    Article  PubMed  Google Scholar 

  8. Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Filipescu D, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Vincent JL, Rossaint R. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(R76):1–45.

    Google Scholar 

  9. Jansen JO, Thomas R, Loudon MA, Brooks A. Damage control resuscitation for patients with major trauma. BMJ. 2009;338(b1778):1–12.

    Google Scholar 

  10. Brohi K, Cohen MJ, Ganter MT, Matthay MA, Mackersie RC, Pittet JF. Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg. 2007;245:812–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brohi K, Cohen MJ, Ganter MT, Schultz MJ, Levi M, Mackersie RC, Pittet JF. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma. 2008;64:1211–7.

    Article  PubMed  Google Scholar 

  12. Rugeri L, Levrat A, David JS, Delecroix E, Floccard B, Gros A, Allaouchiche B, Negrier C. Diagnosis of early coagulation abnormalities in trauma patients by rotation thromboelastography. J Thromb Haemost. 2007;5:289–95.

    Article  CAS  PubMed  Google Scholar 

  13. World Health Organisation: World Health Statistics 2009: Cause-specific mortality and morbidity. [http://www.who.int/whosis/whostat/EN_WHS09_Table2.pdf]. Accessed Sep 2014.

  14. Spahn DR, Rossaint R. Coagulopathy and blood component transfusion in trauma. Br J Anaesth. 2005;95:130–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hussmann B, Lefering R, Waydhas C, Touma A, Kauther MD, Ruchholtz S, Lendemans S, Trauma Registry of the German Society for Trauma Surgery. Does increased prehospital replacement volume lead to a poor clinical course and an increased mortality? A matched-pair analysis of 1896 patients of the Trauma Registry of the German Society for Trauma Surgery who were managed by an emergency doctor at the accident site. Injury. 2013;44:611–7.

    Article  PubMed  Google Scholar 

  16. Cap AP, Spinella PC. Severity of head injury is associated with increased risk of coagulopathy in combat casualties. J Trauma. 2011;71(1 Suppl):S78–81.

    Article  PubMed  Google Scholar 

  17. Frith D, Davenport R, Brohi K. Acute traumatic coagulopathy. Curr Opin Anaesthesiol. 2012;25:229–34.

    Article  PubMed  Google Scholar 

  18. Spivey M, Parr MJ. Therapeutic approaches in trauma-induced coagulopathy. Minerva Anestesiol. 2005;71:281–9.

    CAS  PubMed  Google Scholar 

  19. Hess JR, Lawson JH. The coagulopathy of trauma versus disseminated intravascular coagulation. J Trauma. 2006;60(6 Suppl):S12–9.

    Article  PubMed  Google Scholar 

  20. Gaillard M, Hervé C, Mandin L, Raynaud P. Mortality prognostic factors in chest injury. J Trauma. 1990;30:93–6.

    Article  CAS  PubMed  Google Scholar 

  21. Bottlang M, Simpson T, Sigg J, Krieg JC, Madey SM, Long WB. Noninvasive reduction of open-book pelvic fractures by circumferential compression. J Orthop Trauma. 2002;16:367–73.

    Article  PubMed  Google Scholar 

  22. Knops SP, Van Lieshout EM, Spanjersberg WR, Patka P, Schipper IB. Randomised clinical trial comparing pressure characteristics of pelvic circumferential compression devices in healthy volunteers. Injury. 2011;42:1020–6.

    Article  PubMed  Google Scholar 

  23. Knops SP, Schep NW, Spoor CW, van Riel MP, Spanjersberg WR, Kleinrensink GJ, van Lieshout EM, Patka P, Schipper IB. Comparison of three different pelvic circumferential compression devices: a biomechanical cadaver study. J Bone Joint Surg Am. 2011;93:230–40.

    Article  CAS  PubMed  Google Scholar 

  24. Osborn PM, Smith WR, Moore EE, Cothren CC, Morgan SJ, Williams AE, Stahel PF. Direct retroperitoneal pelvic packing versus pelvic angiography: a comparison of two management protocols for haemodynamically unstable pelvic fractures. Injury. 2009;40:54–60.

    Article  PubMed  Google Scholar 

  25. Papakostidis C, Giannoudis PV. Pelvic ring injuries with haemodynamic instability: efficacy of pelvic packing, a systematic review. Injury. 2009;40(Suppl 4):S53–61.

    Article  PubMed  Google Scholar 

  26. Steinhausen E, Lefering R, Tjardes T, Neugebauer EA, Bouillon B, Rixen D, Committee on Emergency Medicine, Intensive and Trauma Care (Sektion NIS) of the German Society for Trauma Surgery (DGU). A risk-adapted approach is beneficial in the management of bilateral femoral shaft fractures in multiple trauma patients: an analysis based on the trauma registry of the German Trauma Society. J Trauma Acute Care Surg. 2014;76:1288–93.

    Article  PubMed  Google Scholar 

  27. Nahm NJ, Vallier HA. Timing of definitive treatment of femoral shaft fractures in patients with multiple injuries: a systematic review of randomized and nonrandomized trials. J Trauma Acute Care Surg. 2012;73:1046–63.

    Article  PubMed  Google Scholar 

  28. Cotton BA, Au BK, Nunez TC, Gunter OL, Robertson AM, Young PP. Predefined massive transfusion protocols are associated with a reduction in organ failure and post injury complications. J Trauma. 2009;66:41–8.

    Article  PubMed  Google Scholar 

  29. Hoyt DB, Dutton RP, Hauser CJ, Hess JR, Holcomb JB, Kluger Y, Mackway-Jones K, Parr MJ, Rizoli SB, Yukioka T, Bouillon B. Management of coagulopathy in the patients with multiple injuries: results from an international survey of clinical practice. J Trauma. 2008;65:755–64.

    Article  PubMed  Google Scholar 

  30. Sihler KC, Napolitano LM. Complications of massive transfusion. Chest. 2010;137:209–20.

    Article  PubMed  Google Scholar 

  31. Nunez TC, Voskresensky IV, Dossett LA, Shinall R, Dutton WD, Cotton BA. Early prediction of massive transfusion in trauma: simple as ABC (assessment of blood consumption)? J Trauma. 2009;2:346–52.

    Article  Google Scholar 

  32. Yucel N, Lefering R, Maegele M, Vorweg M, Tjardes T, Ruchholtz S, Neugebauer E, Wappler F, Bouillon B, Rixen D, Polytrauma Study Group of the German Trauma Society. Trauma Associated Severe Haemorrhage (TASH)-Score: probability of mass transfusion as surrogate for life threatening haemorrhage after multiple trauma. J Trauma. 2006;60:1228–37.

    Article  PubMed  Google Scholar 

  33. Maegele M, Lefering R, Wafaisade A, Theodorou P, Wutzler S, Fischer P, Bouillon B, Paffrath T, Trauma Registry of the Deutsche Gesellschaft für Unfallchirurgie (TR-DGU). Revalidation and update of the TASH-Score: a scoring system to predict the probability for massive transfusion as a surrogate for life-threatening haemorrhage after severe injury. Vox Sang. 2011;100:231–8.

    Article  CAS  PubMed  Google Scholar 

  34. Rainer TH, Ho AMH, Yeung JHH, Cheung NK, Wong RSM, Tang N, Ng SK, Wong GKC, Lai PBS, Graham CA. Early risk stratification of patients with major trauma requiring massive blood transfusion. Resuscitation. 2011;82:724–9.

    Article  PubMed  Google Scholar 

  35. Vandromme MJ, Griffin RL, McGwin G Jr, Weinberg JA, Rue LW 3rd, Kerby JD. Prospective identification of patients at risk for massive transfusion. Am Surg. 2011;77:155–61.

    PubMed  Google Scholar 

  36. Baker JB, Korn CS, Robinson K, Chan L, Henderson SO. Type and crossmatch of the trauma patient. J Trauma. 2001;50:878–81.

    Article  CAS  PubMed  Google Scholar 

  37. Ruchholtz S, Pehle B, Lewan U, Lefering R, Müller N, Oberbeck R, Waydhas C. The emergency room transfusion score (ETS): prediction of blood transfusion requirement in initial resuscitation after sever trauma. Transfusion Med. 2006;16:49–56.

    Article  CAS  Google Scholar 

  38. Kühne C, Zettl RP, Fischbacher M, Lefering R, Ruchholtz S. Emergency Transfusion Score (ETS): a useful instrument for prediction of blood transfusion requirement in severely injured patients. World J Surg. 2006;32:1183–8.

    Article  Google Scholar 

  39. Callcut RA, Johannigman JA, Kadon KS, Hanseman DJ, Robinson BRH. All massive transfusion criteria are not created equal: defining the predictive value of individual transfusion triggers to better determine who benefits from blood. J Trauma. 2011;70:794–801.

    Article  PubMed  Google Scholar 

  40. Maegele M, Brockamp T, Nienaber U, Probst C, Schoechl H, Görlinger K, Spinella P. Predictive models and algorithms for the need of transfusion including massive transfusion in severely injured patients. Transfus Med Hemother. 2012;39:85–97.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schreiber MA, Perkins J, Kiraly L, Underwood S, Wade C, Holcomb JB. Early predictors of massive transfusion in combat casualties. J Am Coll Surg. 2007;205:541–5.

    Article  PubMed  Google Scholar 

  42. McLaughlin DF, Niles S, Salinas J, Perkins JG, Cox ED, Wade C, Holcomb JB. A predictive model for massive transfusion in combat casualty patients. J Trauma. 2008;64(2 suppl):S57–63.

    Article  PubMed  Google Scholar 

  43. Cancio LC, Wade C, West SA, Holcomb JB. Prediction of mortality and of the need for massive transfusion in casualties arriving at combat support hospitals in Iraq. J Trauma. 2008;64(2 suppl):S51–5.

    Article  PubMed  Google Scholar 

  44. Larson CR, White CE, Spinella PC, Jones JA, Holcomb JB, Blackbourne LH, Wade CE. Association of shock, coagulopathy, and initial vital signs with massive transfusion in combat casualties. J Trauma. 2010;69(suppl 1):S26–32.

    Article  PubMed  Google Scholar 

  45. Turan A, Yang D, Bonilla A, Shiba A, Sessler DI, Saager L, Kurz A. Morbidity and mortality after massive transfusion in patients undergoing non-cardiac surgery. Can J Anaesth. 2013;60:761–70.

    Article  PubMed  Google Scholar 

  46. McDaniel LM, Etchill EW, Raval JS, Neal MD. State of the art: massive transfusion. Transfus Med. 2014;24:138–44.

    Article  CAS  PubMed  Google Scholar 

  47. Hardy JF, De Moerloose P, Samama M, Groupe d’intérêt en Hémostase Périopératoire. Massive transfusion and coagulopathy: pathophysiology and implications for clinical management. Can J Anaesth. 2004;51:293–310.

    Article  PubMed  Google Scholar 

  48. Brohi K, Cohen MJ, Davenport RA. Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care. 2007;13:680–5.

    Article  PubMed  Google Scholar 

  49. Lal DS, Shaz BH. Massive transfusion: blood component ratios. Curr Opin Hematol. 2013;20:521–5.

    Article  PubMed  Google Scholar 

  50. Zallen G, Offner PJ, Moore EE, Blackwell J, Ciesla DJ, Gabriel J, Denny C, Silliman CC. Age of transfused blood is an independent risk factor for postinjury multiple organ failure. Am J Surg. 1999;178:570–2.

    Article  CAS  PubMed  Google Scholar 

  51. Reed RL Jr, Ciavarella D, Heimbach DM, Baron L, Pavlin E, Counts RB, Carrico CJ. Prophylactic platelet administration during massive transfusion. A prospective, randomized, double-blind clinical study. Ann Surg. 1986;203:40–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nagaprasad V, Singh M. Sequential analysis of the influence of blood storage on aggregation, deformability and shape parameters of erythrocytes. Clin Hemorheol Microcirc. 1998;18:273–84.

    CAS  PubMed  Google Scholar 

  53. Hovav T, Yedgar S, Manny N, Barshtein G. Alteration of red cell aggregability and shape during blood storage. Transfusion. 1999;39:277–81.

    Article  CAS  PubMed  Google Scholar 

  54. D’Almeida MS, Jagger J, Duggan M, White M, Ellis C, Chin-Yee IH. A comparison of biochemical and functional alterations of rat and human erythrocytes stored in CPDA-1 for 29 days: implications for animal models of transfusion. Transfus Med. 2000;10:291–303.

    Article  PubMed  Google Scholar 

  55. Sollberger T, Walter R, Brand B, Contesse J, Meredith DO, Reinhart WH. Influence of prestorage leucocyte depletion and storage time on rheologic properties of erythrocyte concentrates. Vox Sang. 2002;82:191–7.

    Article  CAS  PubMed  Google Scholar 

  56. Berezina TL, Zaets SB, Machiedo GW. Alterations of red blood cell shape in patients with severe trauma. J Trauma. 2004;57:82–7.

    Article  PubMed  Google Scholar 

  57. Johnson JL, Moore EE, Gonzalez RJ, Fedel N, Partrick DA, Silliman CC. Alteration of the postinjury hyperinflammatory response by means of resuscitation with a red cell substitute. J Trauma. 2003;54:133–9.

    Article  PubMed  Google Scholar 

  58. Meng ZH, Wolberg AS, Monroe DM 3rd, Hoffman M. The effect of temperature and pH on the activity of factor VIIa: implications for the efficacy of high-dose factor VIIa in hypothermic and acidotic patients. J Trauma. 2003;55:886–91.

    Article  CAS  PubMed  Google Scholar 

  59. Smith HM, Farrow SJ, Ackerman JD, Stubbs JR, Sprung J. Cardiac arrests associated with hyperkalemia during red blood cell transfusion: a case series. Anesth Analg. 2008;106:1062–9.

    Article  PubMed  Google Scholar 

  60. Aboudara MC, Hurst FP, Abbott KC, Perkins RM. Hyperkalemia after packed red blood cell transfusion in trauma patients. J Trauma. 2008;64(suppl 2):S86–91.

    Article  CAS  PubMed  Google Scholar 

  61. Lee TL, Lun KC. Review of problems of massive blood transfusion in a surgical intensive care unit. Ann Acad Med Singap. 1985;14:175–84.

    CAS  PubMed  Google Scholar 

  62. Perkins RM, Aboudara MC, Abbott KC, Holcomb JB. Resuscitative hyperkalemia in noncrush dtrauma: a prospective, observational study. Clin J Am Soc Nephrol. 2007;2:313–9.

    Article  PubMed  Google Scholar 

  63. Wilson RF. Complications of massive transfusions. Surg Rounds. 1981;4:47–54.

    Google Scholar 

  64. Lier H, Krep H, Schroeder S, Stuber F. Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. J Trauma. 2008;65:951–60.

    Article  PubMed  Google Scholar 

  65. Bunker JP, Bendixen HH, Murphy AJ. Hemodynamic effects of intravenously administered sodium citrate. N Engl J Med. 1962;266:372–7.

    Article  CAS  PubMed  Google Scholar 

  66. Meikle A, Milne B. Management of prolonged QT interval during a massive transfusion: calcium, magnesium or both? Can J Anaesth. 2000;47:792–5.

    Article  CAS  PubMed  Google Scholar 

  67. Buddeberg F, Schimmer BB, Spahn DR. Transfusion transmissible infections and transfusion-related immunomodulation. Best Pract Res Clin Anaesthesiol. 2008;22:503–17.

    Article  PubMed  Google Scholar 

  68. Utter GH, Reed WF, Lee TH, Busch MP. Transfusion associated microchimerism. Vox Sang. 2007;93:188–95.

    Article  CAS  PubMed  Google Scholar 

  69. Dunne JR, Malone D, Tracy JK, Gannon C, Napolitano LM. Perioperative anemia: an independent risk factor for infection, mortality, and resource utilization in surgery. J Surg Res. 2002;102:237–44.

    Article  PubMed  Google Scholar 

  70. Hill GE, Frawley WH, Griffith KE, Forestner JE, Minei JP. Allogeneic blood transfusion increases the risk of postoperative bacterial infection: a meta-analysis. J Trauma. 2003;54:908–14.

    Article  PubMed  Google Scholar 

  71. Claridge JA, Sawyer RG, Schulman AM, McLemore EC, Young JS. Blood transfusions correlate with infections in trauma patients in a dose-dependent manner. Am Surg. 2002;68:566–72.

    PubMed  Google Scholar 

  72. Bochicchio GV, Napolitano L, Joshi M, et al. Blood product transfusion and ventilator-associated pneumonia in trauma patients. Surg Infect (Larchmt). 2008;9:415–22.

    Article  Google Scholar 

  73. Dunne JR, Riddle MS, Danko J, Hayden R, Petersen K. Blood transfusion is associated with infection and increased resource utilization in combat casualties. Am Surg. 2006;72:619–25.

    PubMed  Google Scholar 

  74. Dunne JR, Malone DL, Tracy JK, Napolitano LM. Allogenic blood transfusion in the first 24 h after trauma is associated with increased systemic inflammatory response syndrome (SIRS) and death. Surg Infect (Larchmt). 2004;5:395–404.

    Article  Google Scholar 

  75. Beale E, Zhu J, Chan L, Shulman I, Harwood R, Demetriades D. Blood transfusion in critically injured patients: a prospective study. Injury. 2006;37:455–65.

    Article  PubMed  Google Scholar 

  76. Robinson Y, Hostmann A, Matenov A, Ertel W, Oberholzer A. Erythropoiesis in multiply injured patients. J Trauma. 2006;61:1285–91.

    Article  PubMed  Google Scholar 

  77. Goldman M, Webert KE, Arnold DM, Freedman J, Hannon J, Blajchman MA, TRALI Consensus Panel. Proceedings of a consensus conference: towards an understanding of TRALI. Transfus Med Rev. 2005;19:2–31.

    Article  PubMed  Google Scholar 

  78. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R. Report of the American-European Consensus conference on acute respiratory distress syndrome: definitions, mechanisms, relevant outcomes, and clinical trial coordination. Consensus Committee. J Crit Care. 1994;9:72–81.

    Article  CAS  PubMed  Google Scholar 

  79. Marik PE, Corwin HL. Acute lung injury following blood transfusion: expanding the definition. Crit Care Med. 2008;36:3080–4.

    Article  PubMed  Google Scholar 

  80. Gazmuri RJ, Shakeri SA. Blood transfusion and the risk of nosocomial infection: an underreported complication? Crit Care Med. 2002;30:2389–91.

    Article  PubMed  Google Scholar 

  81. Silliman CC, Paterson AJ, Dickey WO, Stroneck DF, Popovsky MA, Caldwell SA, Ambruso DR. The association of biologically active lipids with the development of transfusion-related acute lung injury: a retrospective study. Transfusion. 1997;37:719–26.

    Article  CAS  PubMed  Google Scholar 

  82. Wallis JP, Lubenko A, Wells AW, Chapman CE. Single hospital experience of TRALI. Transfusion. 2003;43:1053–9.

    Article  PubMed  Google Scholar 

  83. Jia X, Malhotra A, Saeed M, Mark RG, Talmor D. Risk factors for ARDS in patients receiving mechanical ventilation for >48 h. Chest. 2008;133:853–61.

    Article  PubMed  Google Scholar 

  84. Gajic O, Gropper MA, Hubmayr RD. Pulmonary edema after transfusion: how to differentiate transfusion-associated circulatory overload from transfusion-related acute lung injury. Crit Care Med. 2006;34:S109–13.

    Article  PubMed  Google Scholar 

  85. Curtis BR, McFarland JG. Mechanisms of transfusion related acute lung injury (TRALI): anti-leukocyte antibodies. Crit Care Med. 2006;34(suppl 5):S118–23.

    Article  PubMed  Google Scholar 

  86. Silliman CC. The two-event model of transfusion-related acute lung injury. Crit Care Med. 2006;34(suppl 5):S124–31.

    Article  PubMed  Google Scholar 

  87. Holcomb JB, Jenkins D, Rhee P, Johannigman J, Mahoney P, Mehta S, Cox ED, Gehrke MJ, Beilman GJ, Schreiber M, Flaherty SF, Grathwohl KW, Spinella PC, Perkins JG, Beekley AC, McMullin NR, Park MS, Gonzalez EA, Wade CE, Dubick MA, Schwab CW, Moore FA, Champion HR, Hoyt DB, Hess JR. Damage control resuscitation: directly addressing the early coagulopathy of trauma. J Trauma. 2007;62:307–10.

    Article  PubMed  Google Scholar 

  88. Kermode JC, Zheng Q, Milner EP. Marked temperature dependence of the platelet calcium signal induced by human von Willebrand factor. Blood. 1999;94:199–207.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Guerado.

Ethics declarations

Conflict of interest

Enrique Guerado, Angeles Medina, Maria Isabel Mata, José Manuel Galvan, Maria Luisa Bertrand declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerado, E., Medina, A., Mata, M.I. et al. Protocols for massive blood transfusion: when and why, and potential complications. Eur J Trauma Emerg Surg 42, 283–295 (2016). https://doi.org/10.1007/s00068-015-0612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-015-0612-y

Keywords

Navigation