Skip to main content
Log in

CT-guided interstitial HDR-brachytherapy for recurrent glioblastoma multiforme: a 20-year single-institute experience

CT-gestützte interstitielle HDR-Brachytherapie bei rezidiviertem Gliobastoma multiforme: 20 Jahre monozentrischer Erfahrung

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

To report our results of computed tomography-guided interstitial high-dose-rate (HDR) brachytherapy (BRT) in the treatment of patients with recurrent inoperable glioblastoma multiforme (GBM).

Patients and methods

Between 1995 and 2014, 135 patients were treated with interstitial HDR BRT for inoperable recurrent GBM located within previously irradiated volumes. Patient’s median age was 57.1 years (14–82 years). All patients were pretreated with surgery, postoperative external beam radiation therapy (EBRT) and systemic chemotherapy (ChT). The median recurrent tumor volume was 42 cm3 (2–207 cm3). The prescribed HDR dose was median 40 Gy (30–50 Gy) delivered in twice-daily fractions of 5.0 Gy over consecutive days. No repeat surgery or ChT was administered in conjunction with BRT. Survival from BRT, progression-free survival (PFS), toxicity as well as the impact of several prognostic factors were evaluated.

Results

At a median follow-up of 9.2 months, the median overall survival following BRT and the median PFS were 9.2 and 4.6 months, respectively. Of the prognostic variables evaluated in univariate analysis, extent of surgery at initial diagnosis, tumor volume at recurrence, as well as time from EBRT to BRT reached statistical significance, retained also in multivariate analysis. Eight patients (5.9%) developed treatment-associated complications including intracerebral bleeding in 4 patients (2.9%), symptomatic focal radionecrosis in 3 patients (2.2%), and severe convulsion in 1 patient (0.7%).

Conclusions

For patients with recurrent GBM, interstitial HDR BRT is an effective re-irradiation method for even larger tumors providing palliation without excessive toxicity.

Zusammenfassung

Ziel

Vorstellung der CT(Computertomographie)-gestützten interstitiellen HDR(„high dose rate“)-Brachytherapie (BRT) zur Behandlung inoperabler GBM(Glioblastoma-multiforme)-Rezidive.

Patienten und Methoden

Von 1995–2014 wurden insgesamt 135 Patienten mit inoperablen GBM-Rezidiven mittels interstitieller BRT rebestrahlt. Das mediane Patientenalter betrug 57,1 Jahre (14–82 Jahre). Alle Patienten waren voroperiert und hatten im Rahmen ihrer Primärbehandlung eine adjuvante Radiochemotherapie erhalten. In der Rezidivsituation betrug das mediane Tumorvolumen 42 cm3 (2–207 cm3). Die Rebestrahlung erfolgte als fraktionierte interstitielle HDR-BRT mit einer medianen Gesamtdosis von 40 Gy (30–50 Gy), appliziert in 2‑mal täglichen Fraktionsdosen zu jeweils 5 Gy über aufeinander folgende Tage. Kein Patient erhielt eine simultane Chemotherapie oder eine erneute Resektion nach BRT. Evaluiert wurden das Überleben nach BRT, das Progressionsfreie Überleben, das Toxizitätsprofil sowie der Einfluss prognostischer Faktoren.

Ergebnisse

Bei einer medianen Nachbeobachtungszeit von 9,2 Monaten betrugen das mediane Überleben nach BRT und das mediane progressionsfreie Überleben jeweils 9,2 und 4,6 Monate. Als statistisch signifikant hinsichtlich der evaluierten prognostischen Faktoren erwiesen sich das Resektionsausmaß bei der Primärbehandlung, das Tumorvolumen in der Rezidivsituation und die Zeit zwischen adjuvanter Radiotherapie und BRT sowohl in der univariaten als auch in der multivariaten Analyse. Acht (5,9 %) therapieassoziierte Komplikationen wurden verzeichnet: intrakranielle Blutungen bei 4 (2,9 %), symptomatische Radionekrosen in 3 (2,2 %) und schwere konvulsive Episoden bei einem (0,7 %) Patienten.

Schlussfolgerung

Die CT-gestützte interstitielle HDR-BRT ist eine sichere Methode für die Rebestrahlung insbesondere größerer GBM-Rezidive, die ohne exzessive Toxizität Palliation bieten kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stupp R, van den Bent MWP, Martin J et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  Google Scholar 

  2. Wick W, Platten M, Meisner C et al (2012) Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 13:707–715

    Article  CAS  Google Scholar 

  3. Laws ER, Shaffrey ME (1999) The inherent invasiveness of cerebral gliomas: implications for clinical management. Int J Dev Neurosci 17:413–420

    Article  Google Scholar 

  4. Straube C, Elpula G, Gempt J et al (2017) Re-irradiation after gross total resection for recurrent glioblastoma. Spatial pattern of recurrence and a review of the literature as a basis for target volume definition. Strahlenther Onkol 193:897–909

    Article  Google Scholar 

  5. Niyazi M, Siefert A, Schwarz SB et al (2011) Therapeutic options for recurrent malignant glioma. Radiother Oncol 98:1–14

    Article  Google Scholar 

  6. Fogh SE, Andrews DW, Glass J et al (2010) Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol 28:3048–3053

    Article  Google Scholar 

  7. Archavlis E, Tselis N, Birn G, Ulrich P, Baltas D, Zamboglou N (2013) Survival analysis of HDR brachytherapy versus reoperation versus temozolomide alone: a retrospective cohort analysis of recurrent glioblastoma multiforme BMJ Open 3(3):e002262. https://doi.org/10.1136/bmjopen-2012-002262

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76:S20–7

    Article  Google Scholar 

  9. Frischer JM, Marosi C, Woehrer A et al (2016) Gamma knife in recurrent glioblastoma. Stereotact Funct Neurosurg 94:265–272

    Article  Google Scholar 

  10. Tselis N, Kolotas C, Birn G et al (2007) CT-guided interstitial HDR brachytherapy for recurrent glioblastoma multiforme. Long-term results. Strahlenther Onkol 183:563–570

    Article  Google Scholar 

  11. Milickovic N, Tselis N, Karagiannis E, Ferentinos K (2017) Iridium-Knife: Another knife in radiation oncology. Brachytherapy 16:884–892

    Article  Google Scholar 

  12. Barbarite E, Sick JT, Berchmans E et al (2016) The role of brachytherapy in the treatment of glioblastoma multiforme. Neurosurg Rev 40(2):195–211. https://doi.org/10.1007/s10143-016-0727-6

    Article  PubMed  Google Scholar 

  13. Amelio D, Amichetti M (2012) Radiation therapy for the treatment of recurrent glioblastoma: an overview. Cancers (Basel) 4:257–280

    Article  Google Scholar 

  14. Redmond KJ, Mehta M (2015) Stereotactic radiosurgery for glioblastoma. Cureus 7:e413

    PubMed  PubMed Central  Google Scholar 

  15. Prados MD, Gutin PH, Phillips TL et al (1992) Interstitial brachytherapy for newly diagnosed patients with malignant gliomas: the UCSF experience. Int J Radiat Oncol Biol Phys 24:593–597

    Article  CAS  Google Scholar 

  16. Gutin PH, Prados MD, Phillips TL et al (1991) External irradiation followed by an interstitial high activity iodine-125 implant “boost” in the initial treatment of malignant gliomas: NCOG study 6G-82-2. Int J Radiat Oncol Biol Phys 21:601–606

    Article  CAS  Google Scholar 

  17. Pedicini P, Florentino A, Simeon V et al (2014) Clinical radiobiology of glioblastoma multiforme. Estimation of tumor control probability from various radiotherapy fractionation schemes. Strahlenther Onkol 190:925–932

    Article  Google Scholar 

  18. Macdonald DR, Cascino TL, Schold SC, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    Article  CAS  Google Scholar 

  19. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  Google Scholar 

  20. Li J, Wang M, Won M et al (2011) Validation and simplification of the Radiation Therapy Oncology Group recursive partitioning analysis classification for glioblastoma. Int J Radiat Oncol Biol Phys 81:623–630

    Article  Google Scholar 

  21. Muth C, Rubner Y, Semrau S et al (2016) Primary glioblastoma multiforme tumors and recurrence. Strahlenther Onkol 192:146–155

    Article  Google Scholar 

  22. Filippini G, Falcone C, Boiardi A et al (2008) Prognostic factors for survival in 676 consecutive patients with newly diagnosed primary glioblastoma. Neuro-oncology 10:79–87

    Article  Google Scholar 

  23. Xu J, Fang J, Shen Y, Zhang J, Liu W, Shen H (2011) Should we reoperate for recurrent high-grade astrocytoma? J Neurooncol 105:291–299

    Article  Google Scholar 

  24. Ringel F, Pape H, Sabel M et al (2016) Clinical benefit from resection of recurrent glioblastomas: results of a multicenter study including 503 patients with recurrent glioblastomas undergoing surgical resection. Neuro-oncology 18:96–104

    Article  Google Scholar 

  25. Oppenlander ME, Wolf AB, Snyder LA et al (2014) An extent of resection threshold for recurrent glioblastoma and its risk for neurological morbidity. J Neurosurg 120:846–853

    Article  Google Scholar 

  26. Montemurro N, Perrini P, Blanco MO, Vannozzi R (2016) Second surgery for recurrent glioblastoma: a concise overview of the current literature. Clin Neurol Neurosurg 142:60–64

    Article  Google Scholar 

  27. Franceschi E, Bartolotti M, Tosoni A et al (2015) The effect of re-operation on survival in patients with recurrent glioblastoma. Anticancer Res 35:1743–1748

    PubMed  Google Scholar 

  28. Nava F, Tramacere I, Fittipaldo A et al (2014) Survival effect of first- and second-line treatments for patients with primary glioblastoma: a cohort study from a prospective registry, 1997–2010. Neuro-oncology 16:719–727

    Article  Google Scholar 

  29. Hervey-Jumper SL, Berger MS (2014) Reoperation for recurrent high-grade glioma: a current perspective of the literature. Neurosurgery 75:491–499

    Article  Google Scholar 

  30. Gorlia T, Stupp R, Brandes AA et al (2012) New prognostic factors and calculators for outcome prediction in patients with recurrent glioblastoma: a pooled analysis of EORTC Brain Tumour Group phase I and II clinical trials. Eur J Cancer 48:1176–1184

    Article  Google Scholar 

  31. Seystahl K, Wick W, Weller M (2016) Therapeutic options in recurrent glioblastoma - an update. Crit Rev Oncol Hematol 99:389–408

    Article  Google Scholar 

  32. Weller M, Tabatabai G, Kästner B et al (2015) MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the DIRECTOR trial. Clin Cancer Res 21:2057–2064

    Article  CAS  Google Scholar 

  33. Wick W, Puduvalli VK, Chamberlain MC et al (2010) Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol 28:1168–1174

    Article  CAS  Google Scholar 

  34. Wick W, Brandes A, Gorlia T et al (2015) LB-05Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of a glioblastoma: the EORTC 26101 trial. Neuro-oncology 17(suppl 5):v1.5–v1. https://doi.org/10.1093/neuonc/nov306

    Article  Google Scholar 

  35. Combs SE, Thilmann C, Edler L, Debus J, Schulz-Ertner D (2005) Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 23:8863–8869

    Article  Google Scholar 

  36. Fokas E, Wacker U, Gross MW, Henzel M, Encheva E, Engenhart-Cabillic R (2009) Hypofractionated stereotactic reirradiation of recurrent glioblastomas: a beneficial treatment option after high-dose radiotherapy? Strahlenther Onkol 185:235–240

    Article  Google Scholar 

  37. Kickingereder P, Hamisch C, Suchorska B et al (2014) Low-dose rate stereotactic iodine-125 brachytherapy for the treatment of inoperable primary and recurrent glioblastoma: single-center experience with 201 cases. J Neurooncol 120:615–623

    Article  CAS  Google Scholar 

  38. Fabrini MG, Perrone F, de Franco L et al (2009) Perioperative high-dose-rate brachytherapy in the treatment of recurrent malignant gliomas. Strahlenther Onkol 185:524–529

    Article  Google Scholar 

  39. Mesti T, Ocvirk J (2016) Malignant gliomas: old and new systemic treatment approaches. Radiol Oncol 50:129–138

    Article  CAS  Google Scholar 

  40. Preusser M, Lim M, Hafler DA, Reardon DA, Sampson JH (2015) Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat Rev Neurol 11:504–514

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios Chatzikonstantinou.

Ethics declarations

Conflict of interest

G. Chatzikonstantinou, N. Zamboglou, E. Archavlis, I. Strouthos, E. Zoga, N. Milickovic, B. Hilaris, D. Baltas, C. Rödel and N. Tselis declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatzikonstantinou, G., Zamboglou, N., Archavlis, E. et al. CT-guided interstitial HDR-brachytherapy for recurrent glioblastoma multiforme: a 20-year single-institute experience. Strahlenther Onkol 194, 1171–1179 (2018). https://doi.org/10.1007/s00066-018-1358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-018-1358-3

Keywords

Schlüsselwörter

Navigation