Skip to main content

Advertisement

Log in

Less increase of CT-based calcium scores of the coronary arteries

Effect three years after breast-conserving radiotherapy using breath-hold

Geringe Zunahme CT-basierter Kalziumwerte der Koronararterien

Wirkung drei Jahre nach brusterhaltender Radiotherapie unter Atemanhalt

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The aim of this prospective longitudinal study was to compare coronary artery calcium (CAC) scores determined before the start of whole breast irradiation with those determined 3 years afterwards.

Patients and methods

Changes in CAC scores were analysed in 99 breast cancer patients. Three groups were compared: patients receiving left- and right-sided radiotherapy, and those receiving left-sided radiotherapy with breath-hold. We analysed overall CAC scores and left anterior descending (LAD) and right coronary artery (RCA) CAC scores. Between the three groups, changes of the value of the LAD minus the RCA CAC scores of each individual patient were also compared.

Results

Three years after breath-hold-based whole breast irradiation, a less pronounced increase of CAC scores was noted. Furthermore, LAD minus RCA scores in patients treated for left-sided breast cancer without breath-hold were higher when compared to LAD minus RCA scores of patients with right-sided breast cancers and those with left-sided breast cancer treated with breath-hold.

Conclusion

Breath-hold in breast-conserving radiotherapy leads to a less pronounced increase of CT-based CAC scores. Therefore, breath-hold probably prevents the development of radiation-induced coronary artery disease. However, the sample size of this study is limited and the follow-up period relatively short.

Zusammenfassung

Ziel

Das Ziel dieser prospektiven Langzeitstudie war der Vergleich der Coronary-Artery-Calcium-(CAC-)Werte vor Beginn der Brustbestrahlung mit den Werten nach 3 Jahren.

Patienten und Methoden

Änderungen der CAC-Werte wurden bei 99 Brustkrebspatienten analysiert. Drei Gruppen wurden untersucht: Patienten nach links- und rechtsseitiger Strahlentherapie sowie mit Bestrahlung unter Atemanhalt. Wir analysierten die Gesamt-CAC-Werte sowie die CAC-Werte der vorderen linken absteigenden („left anterior descending“, LAD) und der rechten Koronararterie („right coronary artery“, RCA). Zwischen den drei Gruppen wurden auch die Veränderungen der CAC-Werte der LAD minus der RCA-Werte für jeden einzelnen Patienten verglichen.

Ergebnisse

Drei Jahre nach Brustbestrahlung mit Atemanhalt wurde eine gering ausgeprägte Erhöhung der CAC-Werte zur Kenntnis genommen. Patienten mit linksseitigem Brustkrebs, die ohne Atemanhalt behandelt wurden, hatten einen höheren LAD-minus-RCA-Wert als Patienten mit rechtsseitigem Brustkrebs und als jene mit linksseitigem Brustkrebs mit Atemanhalt.

Schlussfolgerung

Atemanhalt zusammen mit einer brusterhaltenden Radiotherapie führt zu einem geringen Anstieg der CT-basierten CAC-Werte. Bestrahlungen unter Atemanhalt verhindern wahrscheinlich die Entwicklung von strahlungsinduzierten Krankheiten der Koronararterien. Allerdings ist die Stichprobengröße dieser Studie begrenzt und die Follow-up-Periode relativ kurz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Darby SC, McGale P, Taylor CW, Peto R (2005) Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300.000 women in US SEER cancer registries. Lancet Oncol 6:557–565

    Article  PubMed  Google Scholar 

  2. Hooning MJ, Botma A, Aleman BMP, Baaijens MH, Bartelink H, Klijn JG et al (2007) Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst 99:365–375

    Article  PubMed  Google Scholar 

  3. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Bronnum D et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998

    Article  CAS  PubMed  Google Scholar 

  4. Nilsson G, Holmberg L, Garmo H, Duvernoy O, Sjögren I, Lagerqvist B et al (2012) Distribution of coronary artery stenosis after radiation for breast cancer. J Clin Oncol 30:380–386

    Article  PubMed  Google Scholar 

  5. Whetal T, Nedregaard B, Andersen R, Fosså A, Lund MB, Günther A et al (2014) Atherosclerotic lesions in lymphoma survivors treated with radiotherapy. Radiother Oncol 110:448–454

    Article  Google Scholar 

  6. Greenland P, Bonow RO, Brundage BH, Budoff MJ, Eisenberg MJ, Grundy SM et al (2007) Clinical expert consensus document on coronary artery calcium scoring by computed Tomography in global cardiovascular risk assessment and in evaluation of patients with chest pain. A report of the American College of Cardiology Foundation Clinical Expert Consensus Task Force (ACCF/AHA writing committee to update the 2000 expert consensus document on electron beam computed tomography). Circulation 115:402–426

    Article  PubMed  Google Scholar 

  7. Oudkerk M, Stillman A, Halliburton S, Kalender WA, Möhlenkamp S, McCollough CH et al (2008) Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging. Eur Radiol 18:2785–2807

    Article  PubMed  Google Scholar 

  8. Kavousi M, Elias-Smale S, Rutten J, Leening MJ, Vliegenthart R, Verwoert GC et al (2012) Evaluation of newer risk markers for coronary heart disease risk classification. A cohort study. Ann Intern Med 156:438–444

    Article  PubMed  Google Scholar 

  9. Swanson T, Grills IS, Ye H, Entwistle A, Teahan M, Letts N et al (2013) Six-year experience routinely using moderate deep inspiration breath-hold for the reduction of cardiac dose in left-sided breast irradiation for patients with early-stage or locally advanced breast cancer. Am J Clin Oncol 36:24–30

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mast ME, van Kempen-Harteveld L, Heijenbrok MW, Kalidien Y, Rozema H, Jansen WP et al (2013) Left-sided breast cancer radiotherapy with and without breath-hold: Does IMRT reduce the cardiac dose even further? Radiother Oncol 108:248–253

  11. Bentzen SM, Agrawal RK, Aird EG, Barrett JM, Barrett-Lee PJ, Bliss JM et al (2008) The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. START Trialists’ Group. Lancet Oncol 9:331–341

    Article  CAS  PubMed  Google Scholar 

  12. Whelan TJ, Pignol JP, Levine MN, Julian JA, MacKenzie R, Parpia S et al (2010) Long-term results of hypofractionated radiation therapy for breast cancer. N Engl J Med 362:513–520

    Article  CAS  PubMed  Google Scholar 

  13. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R et al (1990) Quantification of corpora artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  CAS  PubMed  Google Scholar 

  14. Bax JJ, Schuijf JD (2008) Can coronary calcification define the warranty period of a normal myocardial perfusion study? Mayo Clin Proc 83:10–12

    Article  PubMed  Google Scholar 

  15. World Health Organisation (2013) Obesity and overweight. Fact sheet N°3. http://www.who.int/mediacentre/factsheets/fs311/en/ (Created 11 Mar 2013). Accessed 15 Mar 2016

    Google Scholar 

  16. Stewart FA, Heeneman S, Te Poele J, Kruse J, Russell NS, Gijbels M et al (2006) Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE-/- mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol 168:649–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schultz-Hector S, Trott KR (2007) Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys 67:10–18

    Article  CAS  PubMed  Google Scholar 

  18. Basavaraju SR, Easterly CE (2002) Pathophysiological effects of radiation on atherosclerosis development and progression, and the incidence of cardiovascular complications. Med Phys 29:2391–2403

    Article  PubMed  Google Scholar 

  19. Owen JR, Ashton A, Bliss JM, Homewood J, Harper C, Hanson J et al (2006) Effect of radiotherapy fraction size on tumour control in patients with early-stage breast cancer after local tumour excision: long-term results of a randomised trial. Lancet Oncol 7:467–471

    Article  PubMed  Google Scholar 

  20. Bentzen SM, Agrawal RK, Aird EG, Barrett JM, Barrett-Lee PJ, Bentzen SM et al (2008) The UK Standardisation of Breast Radiotherapy (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. START Trialists’ Group. Lancet 371:1098–1107

    Article  CAS  PubMed  Google Scholar 

  21. Zhou ZR, Mei X, Chen XX, Yang ZZ, Hou J, Zhang L et al (2015) Systematic review and meta-analysis comparing hypofractionated with conventional fraction radiotherapy in treatment of early breast cancer. Surg Oncol 24(3):200–211

    Article  PubMed  Google Scholar 

  22. Mast M, van der Klein J, van Geen S, Jacobs M, van Wingerden J, Petoukhova AL et al (2012) Een hartsparende bestralingstechniek bij vrouwen met linkszijdige borstkanker. De resultaten van vier jaar ervaring in Radiotherapiecentrum West. Ned Tijdschr Oncol 6:270–276

  23. Chang M, Suh J, Kirtani V, Dobrescu A, Haas J, Zeldis S et al (2013) Coronary calcium scanning in patients after adjuvant radiation for early breast cancer and ductal carcinoma in situ. Front Oncol 3:253

    Article  PubMed  PubMed Central  Google Scholar 

  24. Korreman SS, Pedersen AN, Aarup LR, Nottrup TJ, Specht L, Nystrom H (2006) Reduction of cardiac and pulmonary complication probabilities after breathing adapted radiotherapy for breast cancer. Int J Radiat Oncol Biol Phys 65:1375–1380

    Article  PubMed  Google Scholar 

  25. Borst GR, Sonke JJ, den Hollander S, Betgen A, Remeijer P, van Giersbergen A et al (2010) Clinical results of image-guided deep inspiration breath hold breast irradiation. Int J Radiat Oncol Biol Phys 78:1345–1351

    Article  PubMed  Google Scholar 

  26. Vikström J, Hjelstuen MHB, Mjaaland I, Dybvik KI (2011) Cardiac and pulmonary dose reduction for tangentially irradiated breast cancer, utilizing deep inspiration breath-hold with audio-visual guidance, without compromising target coverage. Acta Oncol 50:42–50

    Article  PubMed  Google Scholar 

  27. Vennarini S, Fourier-Bidoz N, Aristei C, de Almeida CE, Servois V, Campana F et al (2013) Visualisation of the left anterior descending coronary artery on CT images used for breast radiotherapy planning. Br J Radiol 86:1025

    Article  Google Scholar 

  28. Beck R, Kim L, Yue N, Haffty BG, Khan AJ, Goyal S (2014) Treatment techniques to reduce cardiac irradiation for breast cancer patients treated with breast-conserving surgery and radiation therapy: a review. Front Oncol 14(4):327

    Google Scholar 

  29. Raggi P, Gongora MC, Gopal A, Callister TQ, Budoff M, Shaw LJ (2008) Coronary artery calcium to predict all-cause mortality in elderly men and women. J Am Coll Cardiol 52:17–23

    Article  PubMed  Google Scholar 

  30. Sarwar A, Shaw LJ, Shapiro MD, Blankstein R, Hoffmann U, Cury RC et al (2009) Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging 6:675–688

    Article  Google Scholar 

Download references

Acknowledgements

We thank the patients for participating in this study; the radiation oncologists: J. Biesta, H. Ceha, H. De Jager, P. Koper, T. Stam, S. Swank-Bordewijk, A. Verbeek-de Kanter, R. Wiggenraad for including patients in this study; the medical receptionists for arranging the appointments for the calcium CT scans; colleagues of the radiology department in MCH Antoniushove for arranging and performing the calcium CT scans; I. Korteland for processing the letters to the general practitioners and the patients; J. van Egmond for creating the Access database and his assistance with Excel; T.F.H. Vissers for bibliographical assistance; and J.F.D. Bouricius for critically editing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Mast PhD.

Ethics declarations

Conflict of interest

M. E. Mast, M. W. Heijenbrok, M. L. van Kempen-Harteveld, A.L. Petoukhova, A. N. Scholten, R. Wolterbeek, J. H. M. Schreur, and H. Struikmans state that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mast, M.E., Heijenbrok, M.W., van Kempen-Harteveld, M.L. et al. Less increase of CT-based calcium scores of the coronary arteries. Strahlenther Onkol 192, 696–704 (2016). https://doi.org/10.1007/s00066-016-1026-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-1026-4

Keywords

Schlüsselwörter

Navigation