Skip to main content
Log in

Automatically gated image-guided breath-hold IMRT is a fast, precise, and dosimetrically robust treatment for lung cancer patients

Automatisch gesteuerte, bildgestützte IMRT im Atemanhalt als schnelle, präzise und dosimetrisch stabile Therapie für Patienten mit Bronchialkarzinom

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

High-dose radiotherapy of lung cancer is challenging. Tumors may move by up to 2 cm in craniocaudal and anteroposterior directions as a function of breathing cycle. Tumor displacement increases with treatment time, which consequentially increases the treatment uncertainty.

Objective

This study analyzed whether automatically gated cone-beam-CT (CBCT)-controlled intensity modulated fast deep inspiration breath hold (DIBH) stereotactic body radiation therapy (SBRT) in flattening filter free (FFF) technique and normofractionated lung DIBH intensity-modulated radiotherapy (IMRT)/volumetric-modulated arc therapy (VMAT) treatments delivered with a flattening filter can be applied with sufficient accuracy within a clinically acceptable timeslot.

Materials and methods

Plans of 34 patients with lung tumors were analyzed. Of these patients, 17 received computer-controlled fast DIBH SBRT with a dose of 60 Gy (5 fractions of 12 Gy or 12 fractions of 5 Gy) in an FFF VMAT technique (FFF-SBRT) every other day and 17 received conventional VMAT with a flattening filter (conv-VMAT) and 2-Gy daily fractional doses (cumulative dose 50–70 Gy).

Results

FFF-SBRT plans required more monitor units (MU) than conv-VMAT plans (2956.6 ± 885.3 MU for 12 Gy/fraction and 1148.7 ± 289.2 MU for 5 Gy/fraction vs. 608.4 ± 157.5 MU for 2 Gy/fraction). Total treatment and net beam-on times were shorter for FFF-SBRT plans than conv-VMAT plans (268.0 ± 74.4 s vs. 330.2 ± 93.6 s and 85.8 ± 25.3 s vs. 117.2 ± 29.6 s, respectively). Total slot time was 13.0 min for FFF-SBRT and 14.0 min for conv-VMAT. All modalities could be delivered accurately despite multiple beam-on/-off cycles and were robust against multiple interruptions.

Conclusion

Automatically gated CBCT-controlled fast DIBH SBRT in VMAT FFF technique and normofractionated lung DIBH VMAT can be applied with a low number of breath-holds in a short timeslot, with excellent dosimetric accuracy. In clinical routine, these approaches combine optimally reduced lung tissue irradiation with maximal delivery precision for patients with small and larger lung tumors.

Zusammenfassung

Hintergrund

Die Hochdosisstrahlentherapie des Bronchialkarzinoms ist eine Herausforderung. Bis zu 2 cm kann sich der Tumor in kraniokaudaler und anteroposteriorer Richtung bewegen – abhängig vom Atemzyklus. Die Tumorverschiebung nimmt mit der Behandlungsdauer zu, was also die Behandlungsunsicherheit vermehrt.

Ziel

In der vorliegenden Studie wurde untersucht, ob die automatisch gesteuerte, Cone-Beam-Computertomographie(CBCT)-kontrollierte, intensitätsmodulierte stereotaktische Strahlentherapie („stereotactic body radiation therapy“, SBRT) im Atemanhalt nach schneller tiefer Inspiration („deep inspiration breath hold“, DIBH) ohne Ausgleichskörper („flattening filter free“, FFF) und die mit einem Ausgleichskörper applizierte normal fraktionierte intensitätsmodulierte DIBH-Strahlentherapie/volumenmodulierte Strahlentherapie mit Rotation des Bestrahlungsarms („volumetric-modulated arc therapy“, VMAT) der Lunge mit ausreichender Genauigkeit innerhalb eines klinisch akzeptablen Zeitfensters angewendet werden können.

Material und Methoden

Die Bestrahlungspläne von 34 Patienten mit Bronchialkarzinomen wurden ausgewertet. Von diesen Patienten erhielten 17 eine computergesteuerte SBRT mit schneller DIBH und einer Dosis von 60 Gy (5 Fraktionen à 12 Gy oder 12 Fraktionen à 5 Gy) in FFF-VMAT-Technik (FFF-SBRT) jeden 2. Tag, und 17 erhielten eine konventionelle VMAT mit Ausgleichskörper (conv-VMAT) und täglichen Teildosen von 2 Gy (kumulative Dosis: 50–70 Gy).

Ergebnisse

Für Pläne mit FFF-SBRT waren mehr Überwachungseinheiten („monitor units“, MU) erforderlich als für Pläne mit con-VMAT (2956,6 ± 885,3 MU für 12 Gy/Fraktion bzw. 1148,7 ± 289,2 MU für 5 Gy/Fraktion vs. 608,4 ± 157,5 MU für 2 Gy/Fraktion). Die Dauer der Gesamttherapie und der Beam-on-Zeit („Strahl ein“) waren für FFF-SBRT-Pläne kürzer als für Pläne mit conv-VMAT (268,0 ± 74,4 s vs. 330,2 ± 93,6 s bzw. 85,8 ± 25,3 s vs. 117,2 ± 29,6 s). Das Gesamtzeitfenster betrug 13,0 min für FFF-SBRT und 14,0 min für conv-VMAT. Alle Therapiemodalitäten konnten genau appliziert werden – trotz mehrerer Beam-on-/-off-Zyklen – und waren bei mehrfachen Unterbrechungen stabil.

Schlussfolgerung

Automatisch gesteuerte CBCT-kontrollierte SBRT mit schneller DIBH in VMAT-FFF-Technik und normal fraktionierte DIBH-Lungen-VMAT können mit wenigen Malen Luftanhalten in einem kurzen Zeitfenster mit ausgezeichneter dosimetrischer Genauigkeit appliziert werden. Im klinischen Alltag wird bei diesen Ansätzen die optimal reduzierte Bestrahlung des Lungengewebes mit maximaler Bestrahlungspräzision für Patienten mit kleinen und größeren Bronchialkarzinomen kombiniert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Padda SK, Burt BM, Trakul N, Wakelee HA (2014) Early-stage non-small cell lung cancer: surgery, stereotactic radiosurgery, and individualized adjuvant therapy. Semin Oncol 41:40–56

    Article  PubMed  Google Scholar 

  2. Cykert S, Dilworth-Anderson P, Monroe MH, Walker P, McGuire FR, Corbie-Smith G, Edwards LJ, Bunton AJ (2010) Factors associated with decisions to undergo surgery among patients with newly diagnosed early-stage lung cancer. JAMA 303:2368–2376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, Fakiris A, Bezjak A, Videtic G, Johnstone D, Fowler J, Gore E, Choy H (2010) Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303:1070–1076

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Fakiris AJ, McGarry RC, Yiannoutsos CT, Papiez L, Williams M, Henderson MA, Timmerman R (2009) Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiat Oncol Biol Phys 75:677–682

    Article  PubMed  Google Scholar 

  5. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, Fakiris A, Bezjak A, Videtic G, Choy H (2009) Stereotactic body radiation therapy for medically inoperable early-stage lung cancer patients: analysis of RTOG 0236. Int J Radiat Oncol Biol Phys 75:1092–1099

  6. Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, Belderbos J, Clamon G, Ulutin HC, Paulus R, Yamanaka T, Bozonnat MC, Uitterhoeve A, Wang X, Stewart L, Arriagada R, Burdett S, Pignon JP (2010) Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 28:2181–2190

    Article  PubMed  Google Scholar 

  7. Bradley J (2005) A review of radiation dose escalation trials for non-small cell lung cancer within the Radiation Therapy Oncology Group. Semin Oncol 32:111–113

    Article  Google Scholar 

  8. Bradley JD, Paulus R, Komaki R, Masters GA, Forster K, Schild S, Bogart J, Garces YI, Narayan S, Kavadi V, Nedzi LA, Michalski JM, Johnson D, MacRae RM, Curran WJ, Choy H (2013) A randomized phase III comparison of standard-dose (60 Gy) versus high-dose (74 Gy) conformal chemoradiotherapy with or without cetuximab for stage III non-small cell lung cancer: Results on radiation dose in RTOG 0617. J Clin Oncol 31:Abstr 7501

  9. Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, Miyasaka K (2002) Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 53:822–834

    Article  PubMed  Google Scholar 

  10. Keall PJ, Cattell H, Pokhrel D, Dieterich S, Wong KH, Murphy MJ, Vedam SS, Wijesooriya K, Mohan R (2006) Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system. Int J Radiat Oncol Biol Phys 65:1579–1584

    Article  PubMed  Google Scholar 

  11. Guckenberger M, Meyer J, Wilbert J, Baier K, Sauer O, Flentje M (2007) Precision of image-guided radiotherapy (IGRT) in six degrees of freedom and limitations in clinical practice. Strahlenther Onkol 183:307–313

    Article  PubMed  Google Scholar 

  12. Choi K, Xing L, Koong A, Li R (2013) First study of on-treatment volumetric imaging during respiratory gated VMAT. Med Phys 40:040701

    Article  PubMed Central  PubMed  Google Scholar 

  13. Tahir BCM, Lawless SE, Hatton MQ, Ireland RH (2010) Dosimetric evaluation of inspiration and expiration breath-hold for intensity-modulated radiotherapy planning of non-small cell lung cancer. Phys Med Biol 55:N191–N199

    Article  PubMed  Google Scholar 

  14. Saito T, Sakamoto T, Oya N (2009) Comparison of gating around end-expiration and end-inspiration in radiotherapy for lung cancer. Radiother Oncol 93:430–435

    Article  PubMed  Google Scholar 

  15. Kontrisova K, Stock M, Dieckmann K, Bogner J, Pötter R, Georg D (2006) Dosimetric comparison of stereotactic body radiotherapy in different respiration conditions: a modeling study. Radiother Oncol 81:97–104

    Article  PubMed  Google Scholar 

  16. Boda-Heggemann J, Fleckenstein J, Lohr F, Wertz H, Nachit M, Blessing M, Stsepankou D, Löb I, Küpper B, Kavanagh A, Hansen VN, Brada M, Wenz F, McNair H (2011) Multiple breath-hold CBCT for online image guided radiotherapy of lung tumors: simulation with a dynamic phantom and first patient data. Radiother Oncol 98:309–316

    Article  PubMed  Google Scholar 

  17. Boda-Heggemann J, Frauenfeld A, Weiss C, Simeonova A, Neumaier C, Siebenlist K, Attenberger U, Heußel CP, Schneider F, Wenz F, Lohr F (2014) Clinical outcome of hypofractionated breath-hold image-guided SABR of primary lung tumors and lung metastases. Radiat Oncol 9:10

    Article  PubMed Central  PubMed  Google Scholar 

  18. Panakis N, McNair HA, Christian JA, Mendes R, Symonds-Tayler JR, Knowles C, Evans PM, Bedford J, Brada M (2008) Defining the margins in the radical radiotherapy of non-small cell lung cancer (NSCLC) with active breathing control (ABC) and the effect on physical lung parameters. Radiother Oncol 87:65–73

    Article  PubMed  Google Scholar 

  19. Fu W, Dai J, Hu Y, Han D, Song Y (2004) Delivery time comparison for intensity-modulated radiation therapy with/without flattening filter: a planning study. Phys Med Biol 49:1535–1547

    Article  PubMed  Google Scholar 

  20. Stieler F, Fleckenstein J, Simeonova A, Wenz F, Lohr F (2013) Intensity modulated radiosurgery of brain metastases with flattening filter-free beams. Radiother Oncol 109:448–451

    Article  PubMed  Google Scholar 

  21. Navarria P, Ascolese AM, Mancosu P, Alongi F, Clerici E, Tozzi A, Iftode C, Reggiori G, Tomatis S, Infante M, Alloisio M, Testori A, Fogliata A, Cozzi L, Morenghi E, Scorsetti M (2013) Volumetric modulated arc therapy with flattening filter free (FFF) beams for stereotactic body radiation therapy (SBRT) in patients with medically inoperable early stage non small cell lung cancer (NSCLC). Radiother Oncol 107:414–418

    Article  PubMed  Google Scholar 

  22. Verbakel WF, van den Berg J, Slotman BJ, Sminia P (2013) Comparable cell survival between high dose rate flattening filter free and conventional dose rate irradiation. Acta Oncol 52:652–657

    Article  PubMed  Google Scholar 

  23. Steenken C, Fleckenstein J, Kegel S, Jahnke L, Simeonova A, Hartmann L, Kübler J, Wenz F, Herskind C, Giordano FA (2015) Impact of flattening-filter-free (FFF) radiation on the clonogenic survival of astrocytic cell lines. Strahlenther Onkol 191:590–596

    Article  PubMed  Google Scholar 

  24. Boda-Heggemann J, Mai S, Fleckenstein J, Siebenlist K, Simeonova A, Ehmann M, Steil V, Wenz F, Lohr F, Stieler F (2013) Flattening-filter-free intensity modulated breath-hold image-guided SABR (Stereotactic ABlative Radiotherapy) can be applied in a 15-min treatment slot. Radiother Oncol 109(3):505–509

    Article  PubMed  Google Scholar 

  25. Shimizu S, Shirato H, Kagei K, Nishioka T, Bo X, Dosaka-Akita H, Hashimoto S, Aoyama H, Tsuchiya K, Miyasaka K (2000) Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys 46(5):1127–1133

    Article  CAS  PubMed  Google Scholar 

  26. Mechalakos J, Yorke E, Mageras GS, Hertanto A, Jackson A, Obcemea C, Rosenzweig K, Clifton Ling C (2004) Dosimetric effect of respiratory motion in external beam radiotherapy of the lung. Radiother Oncol 71:191–200

    Article  PubMed  Google Scholar 

  27. Guckenberger M, Meyer J, Wilbert J, Baier K, Mueller G, Wulf J, Flentje M (2006) Cone-beam CT based image-guidance for extracranial stereotactic radiotherapy of intrapulmonary tumors. Acta Oncol 45:897–906

    Article  PubMed  Google Scholar 

  28. Wu J, Betzing C, He TT, Fuss M, D’Souza WD (2013) Dosimetric comparison of patient setup strategies in stereotactic body radiation therapy for lung cancer. Med Phys 40:051709

    Article  PubMed  Google Scholar 

  29. Partridge M, Tree A, Brock J, McNair H, Fernandez E, Panakis N, Brada M (2009) Improvement in tumour control probability with active breathing control and dose escalation: a modelling study. Radiother Oncol 91:325–329

    Article  PubMed  Google Scholar 

  30. Barnes EA, Murray BR, Robinson DM, Underwood LJ, Hanson J, Roa WH (2001) Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int J Radiat Oncol Biol Phys 50:1091–1098

    Article  CAS  PubMed  Google Scholar 

  31. Wong JW, Sharpe MB, Jaffray DA, Kini VR, Robertson JM, Stromberg JS, Martinez AA (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44:911–919

    Article  CAS  PubMed  Google Scholar 

  32. Cheong KH, Kang SK, Lee M, Kim SS, Park S, Hwang TJ, Kim KJ, Oh do H, Bae H, Suh TS (2010) Evaluation of delivered monitor unit accuracy of gated step-and-shoot IMRT using a two-dimensional detector array. Med Phys 37:1146–1151

    Article  PubMed  Google Scholar 

  33. Ahunbay E, Li XA (2007) Investigation of the reliability, accuracy, and efficiency of gated IMRT delivery with a commercial linear accelerator. Med Phys 34:2928–2938

    Article  PubMed  Google Scholar 

  34. Cui G, Housley D, Chen F, Mehta V, Shepard D (2012) Delivery Efficiency and Dosimetric Accuracy of Respiratorygated VMAT Using an Elekta digital accelerator. ASTRO 2012 Poster Presentation

  35. Nicolini G, Vanetti E, Clivio A, Fogliata A, Cozzi L (2010) Pre-clinical evaluation of respiratory-gated delivery of volumetric modulated arc therapy with RapidArc. Phys Med Biol 55:N347–357

    Article  PubMed  Google Scholar 

  36. Fleckenstein J, Hesser J, Wenz F, Lohr F (2015) Robustness of sweeping-window arc therapy treatment sequences against intrafractional tumor motion. Med Phys 42:1538–1545

    Article  PubMed  Google Scholar 

  37. Riley C, Yang Y, Li T, Zhang Y, Heron DE, Hug MS (2014) Dosimetric evaluation of the interplay effect in respiratory-gated RapidArc radiation therapy. Med Phys 41:011715

    Article  PubMed  Google Scholar 

  38. Clivio A, Belosi MF, Cozzi L, Nicolini G, Vanetti E, Bolard G, Fenoglietto P, Krauss H, Fogliata A (2014) On the determination of reference levels for quality assurance of flattening filter free photon beams in radiation therapy. Med Phys 41:021713

    Article  PubMed  Google Scholar 

  39. Fogliata A, Garcia R, Knoos T, Nicolini G, Clivio A, Vanetti E, Khamphan C, Cozzi L (2012) Definition of parameters for quality assurance of flattening filter free (FFF) photon beams in radiation therapy. Med Phys 39:6455–6464

    Article  CAS  PubMed  Google Scholar 

  40. Hrbacek J, Lang S, Graydon SN, Klöck S, Riesterer O (2014) Dosimetric comparison of flattened and unflattened beams for stereotactic ablative radiotherapy of stage I non-small cell lung cancer. Med Phys 41:031709

    Article  PubMed  Google Scholar 

  41. Chang Z, Wu Q, Adamson J, Ren L, Bowsher J, Yan H, Thomas A, Yin FF (2012) Commissioning and dosimetric characteristics of TrueBeam system: composite data of three TrueBeam machines. Med Phys 39:6981–7018

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Simeonova-Chergou M.D..

Ethics declarations

Conflicts of interest

A. Simeonova-Chergou, A. Jahnke, L. Jahnke, K. Siebenlist, F. Stieler, S. Mai, J. Boda-Heggemann, F.Wenz, and F. Lohr state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Additional information

Anna Simeonova-Chergou and Anika Jahnke contributed equally to this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simeonova-Chergou, A., Jahnke, A., Siebenlist, K. et al. Automatically gated image-guided breath-hold IMRT is a fast, precise, and dosimetrically robust treatment for lung cancer patients. Strahlenther Onkol 192, 166–173 (2016). https://doi.org/10.1007/s00066-015-0934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-015-0934-z

Keywords

Schlüsselwörter

Navigation