Skip to main content

Advertisement

Log in

Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions

Prüfung von Genauigkeit und Effizienz atlasbasierter Konturierung zur Strahlentherapie des Prostatakarzinoms bei verschiedenen klinischen Gegebenheiten

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

The goal of the current study was to evaluate the commercially available atlas-based autosegmentation software for clinical use in prostate radiotherapy. The accuracy was benchmarked against interobserver variability.

Material and methods

A total of 20 planning computed tomographs (CTs) and 10 cone-beam CTs (CBCTs) were selected for prostate, rectum, and bladder delineation. The images varied regarding to individual (age, body mass index) and setup parameters (contrast agent, rectal balloon, implanted markers). Automatically created contours with ABAS® and iPlan® were compared to an expert’s delineation by calculating the Dice similarity coefficient (DSC) and conformity index.

Results

Demo-atlases of both systems showed different results for bladder (DSCABAS 0.86 ± 0.17, DSCiPlan 0.51 ± 0.30) and prostate (DSCABAS 0.71 ± 0.14, DSCiPlan 0.57 ± 0.19). Rectum delineation (DSCABAS 0.78 ± 0.11, DSCiPlan 0.84 ± 0.08) demonstrated differences between the systems but better correlation of the automatically drawn volumes. ABAS® was closest to the interobserver benchmark. Autosegmentation with iPlan®, ABAS® and manual segmentation took 0.5, 4 and 15–20 min, respectively. Automatic contouring on CBCT showed high dependence on image quality (DSC bladder 0.54, rectum 0.42, prostate 0.34).

Conclusion

For clinical routine, efforts are still necessary to either redesign algorithms implemented in autosegmentation or to optimize image quality for CBCT to guarantee required accuracy and time savings for adaptive radiotherapy.

Zusammenfassung

Hintergrund und Ziel

Zwei kommerziell erhältliche Systeme zur atlasbasierten automatischen Konturierung wurden hinsichtlich Genauigkeit mit der Interobservervariabilität bei Prostatakarzinomen verglichen.

Material und Methoden

Insgesamt wurden 20 Planungs-CTs und 10 CBCTs (cone-beam CTs) zur Konturierung von Prostata, Rektum und Blase herangezogen. Die Bilddaten variierten hinsichtlich patientenspezifischer (Alter, Body Mass Index) und planungsspezifischer Parameter (Kontrastmittel, Rektumballon, Goldmarker). Automatisch generierte Konturen von ABAS® und iPlan® wurden mit der manuellen Konturierung eines Experten mit Hilfe des „Dice-similarity“-Koeffizienten (DSC) und dem Konformitätsindex verglichen.

Ergebnisse

Die Demoatlanten beider Systeme zeigten unterschiedliche Ergebnisse für Blase (DSCABAS 0,86 ± 0,17; DSCiPlan 0,51 ± 0,30) und Prostata (DSCABAS 0,71 ± 0,14; DSCiPlan 0,57 ± 0,19). Bei den Rektumkonturen (DSCABAS 0,78 ± 0,11; DSCiPlan 0,84 ± 0,08) zeigten sich zwar auch Unterschiede, aber mit einer größeren Korrelation der automatisch erzeugten Volumen. ABAS® wies eine bessere Übereinstimmung zur Interobservervariabilität auf. Die benötigte Zeit für die automatische Konturierung mit iPlan®, ABAS® bzw. manueller Konturierung betrug jeweils 0,5 min, 4 min und 15–20 min. Automatische Konturierungen an CBCTs waren sehr stark abhängig von der Bildqualität (DSC Blase 0,54, Rektum 0,42, Prostata 0,34).

Schlussfolgerung

Für den Einsatz der Systeme in der klinischen Routine sind weitere Bestrebungen zur Verbesserung der Algorithmen als auch zur Bildqualitätsverbesserung am CBCT notwendig. Erst dadurch können die notwendige Genauigkeit und Einsparungen in der Zeit für die adaptierte Strahlentherapie erreicht werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Aljabar P, Heckemann RA, Hammers A et al (2009) Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. Neuroimage 46:726–738

    Article  PubMed  CAS  Google Scholar 

  2. Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187(5):284–291

    Article  PubMed  Google Scholar 

  3. Commowick O, Vincent G, Gregoire M (2008) Atlas-based delineation of lymph node levels in head and neck computed tomography images. Radiother Oncol 87:281–289

    Article  PubMed  Google Scholar 

  4. Ehrhardt J, Handels H, Malina T et al (2001) Atlas-based segmentation of bone structures to support the virtual planning of hip operations. Int J Med Inform 64:439–447

    Article  PubMed  CAS  Google Scholar 

  5. Fiorino C, Renib M, Bolognesi M et al (1998) Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. Radiother Oncol 47:285–292

    Article  PubMed  CAS  Google Scholar 

  6. Genovesi D, Cèfaro GA, Vinciguerra A et al (2011) Interobserver variability of clinical target volume delineation in supra-diaphragmatic Hodgkin’s disease: a multi-institutional experience. Strahlenther Onkol 187(6):357–366

    Article  PubMed  Google Scholar 

  7. Gerstner N, Wachter S, Dorner D et al (1999) Significance of a rectal balloon as internal immobilization device in conformal radiotherapy of prostatic carcinoma. Strahlenther Onkol 175(5):232–238

    Article  PubMed  CAS  Google Scholar 

  8. Ghadjar P, Gwerder N, Manser P et al (2010) High-dose (80 Gy) intensity-modulated radiation therapy with daily image-guidance as primary treatment for localized prostate cancer. Strahlenther Onkol 186(12):687–692

    Article  PubMed  Google Scholar 

  9. Ghilezan M, Yan D, Martinez A (2010) Adaptive radiation therapy for prostate cancer. Semin Radiat Oncol 20:130–137

    Article  PubMed  Google Scholar 

  10. Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186(10):535–543

    Article  PubMed  Google Scholar 

  11. Haas B, Coradi T, Scholz M et al (2008) Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ specific segmentation strategies. Phys Med Biol 53:1751–1771

    Article  PubMed  CAS  Google Scholar 

  12. Han X, Hoogeman MS, Levendag PC et al (2008) Atlas-based auto-segmentation of head and neck ct-images. Med Image Comput Comput Assist Interv 5242:434–441

    Google Scholar 

  13. Heinze P, Meister D, Kober R et al (2002) Atlas-based segmentation of pathological knee joints. Stud Health Technol Inform 85:198–203

    PubMed  Google Scholar 

  14. Huyskens DP, Maingon P, Vanuytsel L et al (2008) A qualitative and quantitative analysis of an auto-segmentation module for prostate cancer. Radiother Oncol 90:337–345

    Article  PubMed  Google Scholar 

  15. Isambert A, Dhermain F, Bidault F et al (2008) Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context. Radiother Oncol 87:93–99

    Article  PubMed  Google Scholar 

  16. Jarry G, Graham SA, Moseley DJ et al (2006) Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Med Phys 33(11):4320–4329

    Article  PubMed  Google Scholar 

  17. Klein S, Heide U van der, Lips I et al (2008) Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med Phys 35:1407–1417

    Article  PubMed  Google Scholar 

  18. Kouwenhouven E, Giezen M, Struikmans H (2009) Measuring the similarity of target volume delineations independent of the number of observers. Phys Med Biol 54:2863–2873

    Article  Google Scholar 

  19. Linguraru MG, Sandberg JK, Li Z et al (2009) Atlas-based automated segmentation of spleen and liver using adaptive enhancement estimation. Med Image Comput Comput Assist Interv 5762:1001–1008

    PubMed  Google Scholar 

  20. Luetgendorf-Caucig C, Fotina I, Stock M et al (2011) Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol 98:154–161

    Article  Google Scholar 

  21. McLaughlin P, Evans C, Feng M, Narayana V (2010) Radiographic and anatomic basis for prostate contouring errors and methods to improve prostate contouring accuracy. Int J Radiat Oncol Biol Phys 76:369–378

    Article  PubMed  Google Scholar 

  22. Michopoulou SK, Costaridou L, Panagiotopoulos E et al (209) Atlas-based segmentation of degenerated lumbar intervertebral discs from MR images of the spine. IEEE Trans Biomed Eng 56:2225–2231

    Article  Google Scholar 

  23. Nakamura N, Shikama N, Takahashi O et al (2010) Variability in bladder volumes of full bladders in definitive radiotherapy for cases of localized prostate cancer. Strahlenther Onkol 186(11):637–642

    Article  PubMed  Google Scholar 

  24. Pallotta S, Bucciolini M, Russo S et al (2006) Accuracy evaluation of image registration and segmentation tools used in conformal treatment planning of prostate cancer. Comput Med Imaging Graph 30:1–7

    Article  PubMed  Google Scholar 

  25. Pasquier D, Lacornerie T, Vermandel M et al (2007) Automatic segmentation of pelvic structures from magnetic resonance images for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 68:592–600

    Article  PubMed  Google Scholar 

  26. Pekar V, Mc Nutt T, Kaus M (2004) Automated model-based organ delineation for radiotherapy planning in prostate region. Int J Radiat Oncol Biol Phys 60:973–980

    PubMed  Google Scholar 

  27. Pinkawa M, Piroth MD, Holy R et al (2011) Combination of dose escalation with technological advances (intensity-modulated and image-guided radiotherapy) is not associated with increased morbidity for patients with prostate cancer. Strahlenther Onkol 187(80):479–484

    Article  PubMed  Google Scholar 

  28. Sims R, Isambert A, Grégoire V et al (2009) A pre-clinical assessment of an atlas-based automatic segmentation tool for the head and neck. Radiother Oncol 93:474–478

    Article  PubMed  Google Scholar 

  29. Stock M, Pasler M, Birkfellner W et al (2009) Image quality and stability of image-guided radiotherapy (IGRT) devices: a comparative study. Radiother Oncol 93(1):1–7

    Article  PubMed  Google Scholar 

  30. Teguh DN, Levendag PC, Voet PW et al (2011) Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. Int J Radiat Oncol Biol Phys 81(4):950–957

    Article  PubMed  Google Scholar 

  31. Zhang T, Chi Y, Meldolesi E, Yan D (2007) Automatic delineation of on-line head and neck computed tomography images: toward on-line adaptive radiotherapy. Int J Radiat Oncol Biol Phys 68:522–530

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Austrian Science Foundation FWF under project L503.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Stock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmat, I., Georg, P., Georg, D. et al. Assessment of accuracy and efficiency of atlas-based autosegmentation for prostate radiotherapy in a variety of clinical conditions. Strahlenther Onkol 188, 807–815 (2012). https://doi.org/10.1007/s00066-012-0117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-012-0117-0

Keywords

Schlüsselwörter

Navigation