Skip to main content

Advertisement

Log in

Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT

Part 1

Bildgebung weiblicher Beckentumoren unter Berücksichtigung von MRT, CT und PET/CT: Teil 1

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Aim

The goal of this article is to provide an overview of diagnostic standard operating procedures for both clinical and imaging assessment of cervical and endometrial carcinoma, sarcoma of the uterus, and primary pelvic non-Hodgkin’s lymphoma.

Methods

The literature was reviewed for methods used to diagnose malignancies in the female pelvis with a special focus on the role of MRI as the imaging method of choice. Furthermore, CT findings and staging criteria for the mentioned malignancies are also provided.

Conclusion

Whereas ultrasound still remains the imaging modality of choice in clinical practice for the early diagnosis of female pelvic malignancies, MRI is more frequently recognized as a diagnostic tool for its accuracy in tumor identification. MRI also plays a crucial role in the 3D pretreatment planning for brachytherapy especially in cervical cancer. In the future, PET/CT might achieve an important role for staging lymph nodes or distant metastases as well as tumor recurrence.

Ziel

Überblick über den aktuellen Stand der bildgebenden Diagnostik des Zervix- und des Endometriumkarzinoms, des Uterussarkoms und des primären Non-Hodgkin-Lymphoms des Beckens.

Methodik

Durchsicht der Fachliteratur und Erstellung einer Übersicht der Diagnostik weiblicher Beckentumoren mittels MRT und CT sowie PET/CT mit Bildbeispielen unter Einschluss der tumorbezogenen Staging-Kriterien sowie empfohlenen MRT-Sequenzen.

Schlussfolgerung

Im klinischen Alltag ist der Ultraschall für die Primärdiagnostik weiblicher Beckentumoren bildgebendes Verfahren der Wahl, wobei die MRT durch den hohen Weichteilkontrast einen zunehmenden Stellenwert als bildgebendes Verfahren zur Tumordetektion besitzt. Auch für die prätherapeutische 3D-Bestrahlungsplanung insbesondere des Zervixkarzinomes spielt die MRT eine wichtige Rolle. Die PET/CT erscheint zunehmend relevanter im Lymphknotenstaging sowie in der Detektion von Fernmetastasen und in der Rezidivdiagnostik.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diagnostik und Therapie des Endometriumkarzinoms. In: Düsseldorf: Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften, 2008.

  2. Diagnostik und Therapie des Zervixkarzinoms. In: Düsseldorf: Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaft, 2008.

  3. Alt C, Gebauer G. Uterus. In: Hallscheidt P, Haferkamp A (eds). Urogenitale Bildgebung. Berlin: Springer, 2011:231–301.

    Chapter  Google Scholar 

  4. Alt C, Gebauer G. Vulva, Vagina. In: Hallscheidt P, Haferkamp A (eds). Urogenitale Bildgebung. Berlin: Springer, 2011:347–97.

    Chapter  Google Scholar 

  5. Benz MR, Tchekmedyian N, Eilber FC et al. Utilization of positron emission tomography in the management of patients with sarcoma. Curr Opin Oncol 2009;21:345–51.

    Article  PubMed  Google Scholar 

  6. Boss EA, Barentsz JO, Massuger LF et al. The role of MR imaging in invasive cervical carcinoma. Eur Radiol 2000;10:256–70.

    Article  PubMed  CAS  Google Scholar 

  7. Chargari C, Magne N, Dumas I et al. Physics contributions and clinical outcome with 3D-MRI-based pulsed-dose-rate intracavitary brachytherapy in cervical cancer patients. Int J Radiat Oncol Biol Phys 2009;74:133–9.

    Article  PubMed  Google Scholar 

  8. Chung HH, Kang WJ, Kim JW et al. The clinical impact of [(18)F]FDG PET/CT for the management of recurrent endometrial cancer: correlation with clinical and histological findings. Eur J Nucl Med Mol Imaging 2008;35:1081–8.

    Article  PubMed  Google Scholar 

  9. De Iaco P, Musto A, Orazi L et al. FDG-PET/CT in advanced ovarian cancer staging: value and pitfalls in detecting lesions in different abdominal and pelvic quadrants compared with laparoscopy. Eur J Radiol 2010 (Epub ahead of print).

  10. Dimopoulos JC, Schirl G, Baldinger A et al. MRI assessment of cervical cancer for adaptive radiotherapy. Strahlenther Onkol 2009;185:282–7.

    Article  PubMed  Google Scholar 

  11. Frei Bonel KA, Kinkel K. Endometrial carcioma. In: Hamm B, Forstner R (eds) MRI and CT of the female pelvis. Berlin: Springer, 2007:101–19.

    Google Scholar 

  12. Fujii S, Matsusue E, Kanasaki Y et al. Detection of peritoneal dissemination in gynecological malignancy: evaluation by diffusion-weighted MR imaging. Eur Radiol 2008;18:18–23.

    Article  PubMed  Google Scholar 

  13. Griffin N, Grant LA, Sala E. Magnetic resonance imaging of vaginal and vulval pathology. Eur Radiol 2008;18:1269–80.

    Article  PubMed  CAS  Google Scholar 

  14. Gruen A, Musik T, Kohler C et al. Adjuvant chemoradiation after laparoscopically assisted vaginal radical hysterectomy (LARVH) in patients with cervical cancer: oncologic outcome and morbidity. Strahlenther Onkol 2011;187:344–9.

    Article  PubMed  Google Scholar 

  15. Haie-Meder C, Mazeron R, Magne N. Clinical evidence on PET-CT for radiation therapy planning in cervix and endometrial cancers. Radiother Oncol 2010;96:351–5.

    Article  PubMed  Google Scholar 

  16. Haie-Meder C, Potter R, Van Limbergen E et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 2005;74:235–45.

    Article  PubMed  Google Scholar 

  17. Hauth EA, Kimmig R, Forsting M. [Magnetic resonance imaging (MRI) of the pelvis in the diagnosis of cervical carcinoma — review]. Zentralbl Gynakol 2006;128:60–7.

    Article  PubMed  CAS  Google Scholar 

  18. Heuck A, Lukas P. Gynäkologie. In: Reiser M, Semmler W (eds). Magnetresonanztomographie. 3rd ed. Berlin: Springer, 2002:781–803.

    Google Scholar 

  19. Hricak H, Yu KK. Radiology in invasive cervical cancer. Am J Roentgenol 1996;167:1101–8.

    CAS  Google Scholar 

  20. Kaji Y, Sugimura K, Kitao M et al. Histopathology of uterine cervical carcinoma: diagnostic comparison of endorectal surface coil and standard body coil MRI. J Comput Assist Tomogr 1994;18:785–92.

    Article  PubMed  CAS  Google Scholar 

  21. Kim SK, Choi HJ, Park SY et al. Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer 2009;45:2103–9.

    Article  PubMed  Google Scholar 

  22. Kim YS, Koh BH, Cho OK et al. MR imaging of primary uterine lymphoma. Abdom Imaging 1997;22:441–4.

    Article  PubMed  CAS  Google Scholar 

  23. Kinkel K, Forstner R, Danza FM et al. Staging of endometrial cancer with MRI: guidelines of the European Society of Urogenital Imaging. Eur Radiol 2009;19:1565–74.

    Article  PubMed  CAS  Google Scholar 

  24. Kitajima K, Suzuki K, Nakamoto Y et al. Low-dose non-enhanced CT versus full-dose contrast-enhanced CT in integrated PET/CT studies for the diagnosis of uterine cancer recurrence. Eur J Nucl Med Mol Imaging 2010;37:1490–8.

    Article  PubMed  Google Scholar 

  25. Köhler G, Evert M. Uterine Sarkome und Mischtumoren. 1st ed. Berlin: De Gruyter 2009:7–120.

    Book  Google Scholar 

  26. Kortmann B, Reimer T, Gerber B et al. Concurrent radiochemotherapy of locally recurrent or advanced sarcomas of the uterus. Strahlenther Onkol 2006;182:318–24.

    Article  PubMed  Google Scholar 

  27. Kosari F, Daneshbod Y, Parwaresch R et al. Lymphomas of the female genital tract: a study of 186 cases and review of the literature. Am J Surg Pathol 2005;29:1512–20.

    Article  PubMed  Google Scholar 

  28. Kubik-Huch RA, Semelka RC, Michel SCA et al. Uterus and cervix. In: Semelka RC (ed). Abdominal-Pelvic MRI. New York: Wiley-Liss, 2002:1049–122.

    Google Scholar 

  29. Lammering G, De Ruysscher D, van Baardwijk A et al. The use of FDG-PET to target tumors by radiotherapy. Strahlenther Onkol 2010;186:471–81.

    Article  PubMed  Google Scholar 

  30. Lehmann KJ. [Malignant neoplasms of the female pelvis]. Radiologe 2009;49:753–64; quiz 65-6.

    Article  PubMed  Google Scholar 

  31. Lehmann KJ, van der Molen AJ, Keberle M. Weibliches Becken. In: Prokop M (ed). Ganzkörper-Computertomographie: Spiral- und Multislice-CT. Stuttgart: Georg Thieme, 2006:737–64.

    Google Scholar 

  32. Lemke U, Hamm B. [Pretreatment diagnostic evaluation of cervical cancer]. Rofo 2009;181:433–40.

    PubMed  CAS  Google Scholar 

  33. Leung F, Terzibachian JJ, Aouar Z et al. [Uterine sarcomas: clinical and histopathological aspects. Report on 15 cases]. Gynecol Obstet Fertil 2008;36:628–35.

    Article  PubMed  CAS  Google Scholar 

  34. Milestone BN, Schnall MD, Lenkinski RE et al. Cervical carcinoma: MR imaging with an endorectal surface coil. Radiology 1991;180:91–5.

    PubMed  CAS  Google Scholar 

  35. Minamimoto R, Senda M, Terauchi T et al. Analysis of various malignant neoplasms detected by FDG-PET cancer screening program: based on a Japanese Nationwide Survey. Ann Nucl Med 2011;25:45–54.

    Article  PubMed  Google Scholar 

  36. Mitchell DG, Snyder B, Coakley F et al. Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Studyndometrium. Int J Gynaecol Obstet 2009;105:103–4.

    Article  Google Scholar 

  37. Potter R, Dimopoulos J, Georg P et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 2007;83:148–55.

    Article  PubMed  Google Scholar 

  38. Preidler KW, Tamussino K, Szolar DM et al. Staging of cervical carcinomas. Comparison of body-coil magnetic resonance imaging and endorectal surface coil magnetic resonance imaging with histopathologic correlation. Invest Radiol 1996;:458–62.

    Article  Google Scholar 

  39. Radeleff B. Ovarien. In: Hallscheidt P, Haferkamp A (eds). Urogenitale Bildgebung. Berlin: Springer, 2011:303–46.

    Chapter  Google Scholar 

  40. Saif MW, Tzannou I, Makrilia N et al. Role and cost effectiveness of PET/CT in management of patients with cancer. Yale J Biol Med 2010;83:53–65.

    PubMed  Google Scholar 

  41. Sala E, Wakely S, Senior E et al. MRI of malignant neoplasms of the uterine corpus and cervix. AJR Am J Roentgenol 2007;188:1577–87.

    Article  PubMed  Google Scholar 

  42. Scheidler J, Heuck AF. Imaging of cancer of the cervix. Radiol Clin North Am 2002;40:577–90, vii.

    Article  PubMed  Google Scholar 

  43. Schlegel W, Schad L, Herfarth KK. Computerunterstützte 3D Bestrahlungsplanung im MRT. In: Reiser M, Semmler W (eds). Magnetresonanztomographie. 3rd ed. Berlin: Springer, 2002:1047–61.

    Google Scholar 

  44. Scully RE Kurmann R, Bonfiglio TA. Histological typing of female genital tract tumors. World Health Organisation — International Histological Classification of Tumours. 2nd ed. Berlin: Springer, 1994:14–8.

    Google Scholar 

  45. Sobin LH, Compton CC. TNM seventh edition: what’s new, what’s changed: communication from the International Union Against Cancer and the American Joint Committee on Cancer. Cancer 2010;116:5336–9.

    Article  PubMed  Google Scholar 

  46. Tateishi U, Terauchi T, Inoue T et al. Nodal status of malignant lymphoma in pelvic and retroperitoneal lymphatic pathways: PET/CT. Abdom Imaging 2010;35:232–40.

    Article  PubMed  Google Scholar 

  47. Thyagarajan MS, Dobson MJ, Biswas A. Case report: appearance of uterine cervical lymphoma on MRI: a case report and review of the literature. Br J Radiol 2004;77:512–5.

    Article  PubMed  CAS  Google Scholar 

  48. Vandecasteele K, De Neve W, De Gersem W et al. Intensity-modulated arc therapy with simultaneous integrated boost in the treatment of primary irresectable cervical cancer. Treatment planning, quality control, and clinical implementation. Strahlenther Onkol 2009;185:799–807.

    Article  PubMed  Google Scholar 

  49. Wachter-Gerstner N, Wachter S, Reinstadler E et al. Bladder and rectum dose defined from MRI based treatment planning for cervix cancer brachytherapy: comparison of dose-volume histograms for organ contours and organ wall, comparison with ICRU rectum and bladder reference point. Radiother Oncol 2003;68:269–76.

    Article  PubMed  Google Scholar 

  50. Weitmann HD, Potter R, Waldhausl C et al. Pilot study in the treatment of endometrial carcinoma with 3D image-based high-dose-rate brachytherapy using modified Heyman packing: clinical experience and dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 2005;62:468–78.

    Article  PubMed  Google Scholar 

  51. Zaspel U, Hamm B. Vagina. In: Hamm B, Forstner R (eds). MRI and CT of the Female Pelvis. Berlin: Springer 2007:275–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin A. Brocker MD, MSc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brocker, K.A., Alt, C.D., Eichbaum, M. et al. Imaging of female pelvic malignancies regarding MRI, CT, and PET/CT. Strahlenther Onkol 187, 611–618 (2011). https://doi.org/10.1007/s00066-011-4001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-4001-0

Key Words

Schlüsselwörter

Navigation