Skip to main content

Advertisement

Log in

Radiation-induced changes in breathing frequency and lung histology of C57BL/6J mice are time- and dose-dependent

Strahleninduzierte Veränderungen der Atemfrequenz und Lungenhistologie bei C57BL/6J-Mäusen sind zeit- und dosisabhängig

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Pneumonitis and fibrosis constitute serious adverse effects of radiotherapy in the thoracic region. In this study, time-course and dose-dependence of clinically relevant parameters of radiation-induced lung injury in C57BL/6J mice were analyzed. A well-characterized disease model is necessary for the analysis of the cellular and molecular mechanisms using genetically modified mice.

Material and methods

C57BL/6J mice received single dose right hemithorax irradiation with 12.5 or 22.5 Gy. Body weight and breathing frequency were recorded as parameters for health impairment. Lung tissue was collected over 24 weeks for histological analysis.

Results

Hemithorax irradiation with 12.5 or 22.5 Gy induced biphasic breathing impairment with the first increase between days 7 and 70. Although breathing impairment was more pronounced in the 22.5 Gy group, it was accompanied in both dose groups by pneumonitis-associated histological changes. A second rise in breathing frequency ratios became visible starting on day 70 with a steady increase until day 210. Again, breathing was more strongly affected in the 22.5 Gy group. However, breathing impairment coincided only in the 22.5 Gy group with a significant increase in collagen deposition in the lung tissue by day 210. Tissue inflammation and fibrosis were observed in the irradiated and the shielded lungs, pointing toward involvement of systemic effects.

Conclusion

Hemithorax irradiation induces time-dependent pneumonitis and fibrosis in C57BL/6J mice. While hemithorax irradiation with 12.5 Gy is sufficient to induce lung inflammation, it is below the threshold for collagen deposition and fibrosis development by day 210.

Zusammenfassung

Ziel

Pneumonitis und Lungenfibrose sind dosislimitierende Nebenwirkungen einer Strahlentherapie im Bereich des Thorax. In der vorliegenden Studie wurden Zeit- und Dosisabhängigkeit klinisch relevanter Parameter strahleninduzierter Nebenwirkungen der Lunge bei C57BL/6J-Mäusen untersucht. Ein gut definiertes Krankheitsmodell ist Voraussetzung für die Aufklärung molekularer und zellulärer Mechanismen strahleninduzierter Spätfolgen mithilfe genetisch veränderter Mäuse.

Material und Methoden

Der rechte Hemithorax von C57BL/6J-Mäusen wurde mit einer Einzeldosis 12,5 oder 22,5 Gy bestrahlt. Als klinisch relevante Toxizitätsparameter wurden Körpergewicht und Atemfrequenz analysiert. Für histologische Analysen wurde Lungengewebe über 24 Wochen zu definierten Zeitpunkten entnommen.

Ergebnisse

Die Hemithorax-Bestrahlung mit 12,5 oder 22,5 Gy induzierte einen biphasischen Anstieg der Atemfrequenzen, wobei der Anstieg in der 22,5-Gy-Gruppe jeweils stärker ausgeprägt war, als in der 12,5-Gy-Gruppe. Im Rahmen der 1. Phase zwischen Tag 7 und 70 war der Atemfrequenzanstieg bei beiden Dosisgruppen mit Pneumonitis-typischen histologischen Veränderungen assoziiert. Ein zweiter, kontinuierlicher Anstieg der Atemfrequenzen wurde zwischen Tag 70 und Tag 210 beobachtet. Allerdings wurde nur in der 22,5-Gy-Gruppe ein signifikanter Anstieg der für die Lungenfibrose charakteristischen Kollagendeposition nachgewiesen. Strahleninduzierte Pneumonitis und Fibrose traten sowohl in der bestrahlten als auch in der abgeschirmten Lunge auf, was auf eine Beteiligung systemischer Effekte hindeutet.

Schlussfolgerung

Eine Bestrahlung des Hemithorax induziert zeit- und dosisabhängig Pneumonitis und Fibrose bei C57BL/6J-Mäusen. Die Einzeit-Radiotherapie (RT) mit 12,5 Gy reicht aus, um entzündliche Veränderungen des Lungengewebes hervorzurufen, wogegen eine gesteigerte Kollagendeposition, ein Charakteristikum der Fibrose, die Applikation höherer Strahlendosen erfordert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 6

References

  1. Graves PR, Siddiqui F, Anscher MS, Movsas B (2010) Radiation pulmonary toxicity: from mechanisms to management. Semin Radiat Oncol 20:201–207

    Article  PubMed  Google Scholar 

  2. Bolling T, Kreuziger DC, Ernst I et al (2011) Retrospective, monocentric analysis of late effects after total body irradiation (TBI) in adults. Strahlenther Onkol 187:311–315

    Article  PubMed  Google Scholar 

  3. Hope AJ, Lindsay PE, El Naqa I et al (2006) Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. Int J Radiat Oncol Biol Phys 65:112–124

    Article  PubMed  Google Scholar 

  4. Trott KR, Herrmann T, Kasper M (2004) Target cells in radiation pneumopathy. Int J Radiat Oncol Biol Phys 58:463–469

    Article  PubMed  Google Scholar 

  5. Movsas B, Raffin TA, Epstein AH, Link CJ Jr (1997) Pulmonary radiation injury. Chest 111:1061–1076

    Article  PubMed  CAS  Google Scholar 

  6. Roeder F, Friedrich J, Timke C et al (2010) Correlation of patient-related factors and dose-volume histogram parameters with the onset of radiation pneumonitis in patients with small cell lung cancer. Strahlenther Onkol 186:149–156

    Article  PubMed  Google Scholar 

  7. Kyas I, Hof H, Debus J et al (2007) Prediction of radiation-induced changes in the lung after stereotactic body radiation therapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67:768–774

    Article  PubMed  Google Scholar 

  8. Liao ZX, Komaki RR, Thames HD Jr et al (2010) Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys 76:775–781

    Article  PubMed  Google Scholar 

  9. Yom SS, Liao Z, Liu HH et al (2007) Initial evaluation of treatment-related pneumonitis in advanced-stage non-small-cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 68:94–102

    Article  PubMed  CAS  Google Scholar 

  10. Oshiro Y, Aruga T, Tsuboi K et al (2010) Stereotactic body radiotherapy for lung tumors at the pulmonary hilum. Strahlenther Onkol 186:274–279

    Article  PubMed  Google Scholar 

  11. Zurl B, Stranzl H, Winkler P, Kapp KS (2010) Quantitative assessment of irradiated lung volume and lung mass in breast cancer patients treated with tangential fields in combination with deep inspiration breath hold (DIBH). Strahlenther Onkol 186:157–162

    Article  PubMed  Google Scholar 

  12. Moeller A, Ask K, Warburton D et al (2008) The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 40:362–382

    Article  PubMed  CAS  Google Scholar 

  13. Chiang CS, Liu WC, Jung SM et al (2005) Compartmental responses after thoracic irradiation of mice: strain differences. Int J Radiat Oncol Biol Phys 62:862–871

    Article  PubMed  Google Scholar 

  14. O’Brien TJ, Letuve S, Haston CK (2005) Radiation-induced strain differences in mouse alveolar inflammatory cell apoptosis. Can J Physiol Pharmacol 83:117–122

    Article  Google Scholar 

  15. Johnston CJ, Piedboeuf B, Baggs R et al (1995) Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis. Radiat Res 142:197–203

    Article  PubMed  CAS  Google Scholar 

  16. Marks LB, Bentzen SM, Deasy JO et al (2010) Radiation dose-volume effects in the lung. Int J Radiat Oncol Biol Phys 76:70–76

    Article  Google Scholar 

  17. Travis EL, Vojnovic B, Davies EE, Hirst DG (1979) A plethysmographic method for measuring function in locally irradiated mouse lung. Br J Radiol 52:67–74

    Article  PubMed  CAS  Google Scholar 

  18. Heinzelmann F, Jendrossek V, Lauber K et al (2006) Irradiation-induced pneumonitis mediated by the CD95/CD95-ligand system. J Natl Cancer Inst 98:1248–1251

    Article  PubMed  CAS  Google Scholar 

  19. Ashcroft T, Simpson JM, Timbrell V (1988) Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol 41:467–470

    Article  PubMed  CAS  Google Scholar 

  20. Down JD, Nicholas D, Steel GG (1986) Lung damage after hemithoracic irradiation: dependence on mouse strain. Radiother Oncol 6:43–50

    Article  PubMed  CAS  Google Scholar 

  21. Hallahan DE, Geng L, Shyr Y (2002) Effects of intercellular adhesion molecule 1 (ICAM-1) null mutation on radiation-induced pulmonary fibrosis and respiratory insufficiency in mice. J Natl Cancer Inst 94:733–741

    Article  PubMed  CAS  Google Scholar 

  22. Haston CK, Travis EL (1997) Murine susceptibility to radiation-induced pulmonary fibrosis is influenced by a genetic factor implicated in susceptibility to bleomycin-induced pulmonary fibrosis. Cancer Res 57:5286–5291

    PubMed  CAS  Google Scholar 

  23. Travis EL, Down JD, Holmes SJ, Hobson B (1980) Radiation pneumonitis and fibrosis in mouse lung assayed by respiratory frequency and histology. Radiat Res 84:133–143

    Article  PubMed  CAS  Google Scholar 

  24. Liao ZX, Travis EL, Tucker SL (1995) Damage and morbidity from pneumonitis after irradiation of partial volumes of mouse lung. Int J Radiat Oncol Biol Phys 32:1359–1370

    Article  PubMed  CAS  Google Scholar 

  25. Lissner J, Argenton H, Bock H et al (1966) Animal experiment studies on radiation pneumonitis. Strahlentherapie 131:577–594

    PubMed  CAS  Google Scholar 

  26. Rube CE, Wilfert F, Palm J et al (2004) Irradiation induces a biphasic expression of pro-inflammatory cytokines in the lung. Strahlenther Onkol 180:442–448

    PubMed  Google Scholar 

  27. Hong JH, Chiang CS, Tsao CY et al (1999) Rapid induction of cytokine gene expression in the lung after single and fractionated doses of radiation. Int J Radiat Biol 75:1421–1427

    Article  PubMed  CAS  Google Scholar 

  28. Cappuccini F, Eldh T, Bruder D et al (2011) New insights into the molecular pathology of radiation-induced pneumopathy. Radiother Oncol 101:86–92

    Article  PubMed  CAS  Google Scholar 

  29. Phillips TL (1966) An ultrastructural study of the development of radiation injury in the lung. Radiology 87:49–54

    PubMed  CAS  Google Scholar 

  30. Maisin JR (1970) The ultrastructure of the lung of mice exposed to a supra-lethal dose of ionizing radiation on the thorax. Radiat Res 44:545–564

    Article  PubMed  CAS  Google Scholar 

  31. Adamson IY, Bowden DH (1983) Endothelial injury and repair in radiation-induced pulmonary fibrosis. Am J Pathol 112:224–230

    PubMed  CAS  Google Scholar 

  32. Maisin JR (1974) The influence of radiation on blood vessels and circulation. Chapter 3. Ultrastructure of the vessel wall. Curr Top Radiat Res Q 10:29–57

    PubMed  CAS  Google Scholar 

  33. Sharplin J, Franko AJ (1989) A quantitative histological study of strain-dependent differences in the effects of irradiation on mouse lung during the early phase. Radiat Res 119:1–14

    Article  PubMed  CAS  Google Scholar 

  34. Kawamoto M, Fukuda Y (1990) Cell proliferation during the process of bleomycin-induced pulmonary fibrosis in rats. Acta Pathol Jpn 40:227–238

    PubMed  CAS  Google Scholar 

  35. McDonald S, Rubin P, Chang AY et al (1993) Pulmonary changes induced by combined mouse beta-interferon (rMuIFN-beta) and irradiation in normal mice—toxic versus protective effects. Radiother Oncol 26:212–218

    Article  PubMed  CAS  Google Scholar 

  36. Rodrigues G, Lock M, D’Souza D et al (2004) Prediction of radiation pneumonitis by dose-volume histogram parameters in lung cancer—a systematic review. Radiother Oncol 71:127–138

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge M. Wehrman (Institute of Pathology, University Hospital Tuebingen, Germany), K. Nowak, R. Boras (Department of Radiation Oncology, University of Tuebingen), and A. Cwejn (Department of Animal Physiology, University of Tuebingen) for excellent technical support. We thank E. Kienzle (Department of Orthopedic Surgery, University Hospital Tuebingen, Germany) and J. Hennenlotter (Department of Urology, University Hospital Tuebingen, Germany) for providing technical equipment. This work was funded by grants to V.J. and C.B. from the Deutsche Krebshilfe/Mildred-Scheel-Stiftung (107388) and to T.E. by the Doctoral Programme“Cellular mechanisms of immune-associated processes” GK 794, University of Tuebingen, Germany.

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jendrossek.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldh, T., Heinzelmann, F., Velalakan, A. et al. Radiation-induced changes in breathing frequency and lung histology of C57BL/6J mice are time- and dose-dependent. Strahlenther Onkol 188, 274–281 (2012). https://doi.org/10.1007/s00066-011-0046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-0046-3

Keywords

Schlüsselwörter

Navigation