Skip to main content
Log in

Dosimetric integration of daily mega-voltage cone-beam CT for image-guided intensity-modulated radiotherapy

Dosisintegration von täglichen Megavolt-Cone-Beam-CTs (MV-CBCT) für die bildgestützte intensitätsmodulierte Strahlentherapie

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

The goal of this work was to compare different methods of incorporating the additional dose of mega-voltage cone-beam CT (MV-CBCT) for image-guided intensity modulated radiotherapy (IMRT) of different tumor entities.

Material and methods

The absolute dose delivered by the MV-CBCT was calculated and considered by creating a scaled IMRT plan (scIMRT) by renormalizing the clinically approved plan (orgIMRT) so that the sum with the MV-CBCT dose yields the same prescribed dose. In the other case, a newly optimized plan (optIMRT) was generated by including the dose distribution of the MV-CBCT as pre-irradiation. Both plans were compared with the orgIMRT plan and a plan where the last fraction was skipped.

Results

No significant changes were observed regarding the 95% conformity index of the target volume. The mean dose of the organs at risk (OAR) increased by approx. 7% for the scIMRT plan and 5% for the optIMRT plan. A significant increase of the mean dose to the outline contour was observed, ranging from 3.1 ± 1.3% (optIMRT) to 13.0 ± 6.1% (scIMRT) for both methods over all entities. If the dose of daily MV-CBCT would have been ignored, the additional dose accumulated to nearly a whole treatment fraction with a general increase of approx. 10% to the OARs and approx. 4% to the target volume.

Conclusion

Both methods of incorporating the additional MV-CBCT dose into the treatment plan are suitable for clinical practice. The dose distribution of the target volume could be achieved as conformal as with the orgIMRT plan, while only a moderate increase of mean dose to OAR was observed.

Zusammenfassung

Zielsetzung

Vergleich verschiedener Methoden zur Integration der zusätzlichen Dosis von täglichen Megavolt-Cone-Beam-CTs (MV-CBCT) für die bildgestützte intensitätsmodulierte Strahlentherapie (IMRT) verschiedener Tumorentitäten.

Material und Methoden

Der absolute zusätzliche Dosisbeitrag durch das MV-CBCT wurde jeweils berechnet. In einem Fall wurde durch Re-Normalisierung ein skalierter IMRT-Plan (scIMRT) erzeugt, bei dem die Summe aus IMRT-Plan und MV-CBCT die verschriebene Dosis des klinisch akzeptierten IMRT-Plans (orgIMRT) ergab. Im anderen Fall wurde ein neu optimierter IMRT-Plan (optIMRT) erstellt, der die zusätzliche Dosis des MV-CBCT als Vorbelastung berücksichtigt. Beide Pläne wurden mit dem orgIMRT-Plan und einem Plan, bei dem die letzte Fraktion weggelassen wurde, verglichen.

Ergebnisse

Es zeigten sich keine signifikanten Veränderungen des 95%-Konformität-Index des Zielvolumens. Die mittlere Dosisbelastung der Risikoorgane (OAR) erhöhte sich beim scIMRT-Plan um etwa 7% und beim optIMRT-Plan um etwa 5%. Es zeigte sich ein signifikanter Anstieg der mittleren Dosis der Außenkontur des Patienten im Bereich von 3,1 ± 1,3% (optIMRT) bis 13,0 ± 6,1% (scIMRT) bei beiden Methoden über alle Lokalisationen. Der zusätzliche Dosisbeitrag eines täglichen MV-CBCT lag in der Größenordnung einer Fraktion und führte insgesamt zu einer Zunahme der Belastung der Risikoorgane um etwa 10% und der Dosis im Zielvolumen um etwa 4%.

Schlussfolgerungen

Beide Methoden zur Integration der zusätzlichen Dosis eines MV-CBCT in den Bestrahlungsplan eigenen sich für die klinische Routine. Die Dosisverteilung des Zielvolumens war im Vergleich zur IMRT ähnlich konformal, bei moderatem Anstieg der mittleren Dosisbelastung der Risikoorgane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bentel GC, Marks LB, Sherouse GW et al (1995) A customized head and neck support system. Int J Radiat Oncol Biol Phys 32:245–248

    Article  PubMed  CAS  Google Scholar 

  2. Dörr W, Herrmann T (2002) Second primary tumors after radiotherapy for malignancies. Strahlenther Onkol 178:357–362

    Article  PubMed  Google Scholar 

  3. Fiorino C, Reni M, Bolognesi A et al (1998) Set-up error in supine-positioned patients immobilized with two different modalities during conformal radiotherapy of prostate cancer. Radiother Oncol 49:133–141

    Article  PubMed  CAS  Google Scholar 

  4. Gayou O, Parda DS, Johnson M et al (2007) Patient dose and image quality from mega-voltage cone beam computed tomography imaging. Med Phys 34:499–506

    Article  PubMed  CAS  Google Scholar 

  5. Guckenberger M, Ok S, Polat B et al (2010) Toxicity after intensity-modulated, image-guided radiotherapy for prostate cancer. Strahlenther Onkol 186:535–543. Erratum in: Strahlenther Onkol 186:705

    Google Scholar 

  6. Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56:83–88

    Article  PubMed  Google Scholar 

  7. Hermanto U, Frija EK, Lii MJ et al (2007) Intensity modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high grade gliomas: does IMRT increase the integral dose to normal brain? Int J Radiat Oncol Biol Phys 67:1135–1144

    Article  PubMed  Google Scholar 

  8. Hong TS, Tome WA, Chappell RJ et al (2005) The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 61:779–788

    Article  PubMed  Google Scholar 

  9. Kapanen M, Collan J, Saarilahti K et al (2009) Accuracy requirements for head and neck intensity-modulated radiation therapy based on observed dose response of the major salivary glands. Radiother Oncol 93:109–114

    Article  PubMed  Google Scholar 

  10. Kry SF, Salehpour M, Followill DS et al (2005) The calculated risk of secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 62:1195–1203

    Article  PubMed  Google Scholar 

  11. Miften M, Gayou O, Reitz B et al (2007) IMRT planning and delivery incorporating daily dose from mega-voltage cone-beam computed tomography imaging. Med Phys 34:3760–3767

    Article  PubMed  Google Scholar 

  12. Milker-Zabel S, Zabel-du Bois A, Huber P et al (2007) Intensity-modulated radiotherapy for complex-shaped meningioma of the skull base: long-term experience of a single institution. Int J Radiat Oncol Biol Phys 68:858–863

    Article  PubMed  Google Scholar 

  13. Morin O, Gillis A, Descovich M et al (2007) Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys 34:1819–1827

    Article  PubMed  Google Scholar 

  14. Peng LC, Yang CC, Sim S et al (2006) Dose comparison of megavoltage cone-beam and orthogonal-pair portal images. J Appl Clin Med Phys 8:10–20

    Article  PubMed  Google Scholar 

  15. Peponi E, Glanzmann C, Kunz G et al (2010) Simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) in nasopharyngeal cancer. Strahlenther Onkol 186:135–142

    Article  PubMed  Google Scholar 

  16. Pinkawa M, Holy R, Piroth MD et al (2010) Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with 18 F-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol 186:600–606

    Article  PubMed  Google Scholar 

  17. Preiser K, Bortfeld T, Hartwig K et al (1998) Inverse radiotherapy planning for intensity modulated photon fields. Radiologe 38:228–234. Review

    Article  PubMed  CAS  Google Scholar 

  18. Radiotherapy equipment – Coordinates, movements and scales. IEC 61217:1996–2008

  19. Schlegel W, Pastyr O, Bortfeld T et al (1992) Computer systems and mechanical tools for stereotactically guided conformation therapy with linear accelerators. Int J Radiat Oncol Biol Phys 24:781–787

    Article  PubMed  CAS  Google Scholar 

  20. Stützel J, Oelfke U, Nill S (2008) A quantitive image quality comparison of four different image guided therapy devices. Radiother Oncol 86:20–24

    Article  PubMed  Google Scholar 

  21. Wiezorek T, Schwahofer A, Schubert K (2009) The influence of different IMRT. Techniques on the peripheral dose. Strahlenther Onkol 185:696–702

    Article  PubMed  Google Scholar 

  22. Zabel A, Milker-Zabel S, Huber P et al (2004) Fractionated stereotactic conformal radiotherapy in the management of large chemodectomas of the skull base. Int J Radiat Oncol Biol Phys 58:1445–1450

    Article  PubMed  Google Scholar 

  23. Zwicker F, Hauswald H, Nill S, Rhein B et al (2010) New multileaf collimator with a leaf width of 5 mm improves plan quality compared to 10 mm in step-and-shoot IMRT of HNC using integrated boost procedure. Strahlenther Onkol 186:334–343

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zabel-du Bois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabel-du Bois, A., Nill, S., Ulrich, S. et al. Dosimetric integration of daily mega-voltage cone-beam CT for image-guided intensity-modulated radiotherapy. Strahlenther Onkol 188, 120–126 (2012). https://doi.org/10.1007/s00066-011-0021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-0021-z

Keywords

Schlüsselwörter

Navigation