Skip to main content
Log in

Decreased left ventricular torsion in patients with isolated mitral stenosis

Verminderte linksventrikuläre Torsion bei Patienten mit isolierter Mitralstenose

  • e-Herz: Original article
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Background

Left ventricular (LV) torsion is a sensitive indicator of myocardial contractility and cardiac structure, and has recently been recognized as a sensitive indicator of cardiac performance. The aim of our study was to assess the effect of isolated mitral stenosis on LV torsion.

Patients and methods

We enrolled 19 patients with isolated mitral stenosis and 19 age- and gender-matched healthy subjects in the study. All patients had a normal sinus rhythm. All study subjects underwent two-dimensional echocardiography. Basal and apical LV rotations and LV torsion were evaluated using speckle-tracking echocardiography.

Results

Demographic characteristics, basic echocardiographic measures of LV ejection fraction, LV wall thickness, and LV mass index were similar between the two groups. The degrees of LV torsion (11.3 ± 4.7, 15.4 ± 4.9°, p=0.014) and LV basal rotation (− 3.7 ± 1.9, − 6.5 ± 2.1°, p< 0.001) were significantly decreased in the mitral stenosis group. There was a moderate positive correlation between mitral valve area and LV torsion (r=0.531, p=0.019).

Conclusion

We showed significant reductions in LV torsion and LV basal rotation in patients with mitral valve stenosis. Structural and anatomical changes occurring during the progression of mitral stenosis may be responsible for these impaired movements.

Zusammenfassung

Hintergrund

Die linksventrikuläre (LV-)Torsion ist ein empfindlicher Indikator der Myokardkontraktilität und der Herzstruktur und ist vor Kurzem auch als empfindlicher Indikator der Herzleistung identifiziert worden. Ziel der vorliegenden Studie war es, die Auswirkungen einer isolierten Mitralstenose auf die LV-Torsion zu untersuchen.

Methoden

In die Studie aufgenommen wurden 19 Patienten mit isolierter Mitralstenose und 19 diesen in Alter und Geschlecht entsprechende gesunde Personen. Sämtliche Patienten wiesen einen normalen Sinusrhythmus auf. Bei allen Studienteilnehmern wurde eine 2-dimensionale Echokardiographie durchgeführt. Mit der Speckle-Tracking-Echokardiographie wurden die basale und apikale LV-Rotation sowie die LV-Torsion bestimmt.

Ergebnisse

In beiden Gruppen waren die demographischen Kennzeichen sowie grundlegende Echokardiographieparameter wie LV-Ejektionsfraktion, LV-Wanddicke und LV-Massenindex ähnlich. Der Grad der LV-Torsion (11,3 ± 4,7; 15,4 ± 4,9°; p=0,014) und der basalen LV-Rotation (− 3,7 ± 1,9; − 6,5 ± 2,1°; p< 0,001) waren in der Gruppe mit Mitralstenose signifikant vermindert. Es bestand eine mäßige positive Korrelation zwischen dem Mitralklappenbereich und der LV-Torsion (r=0,531; p=0,019).

Schlussfolgerung

In dieser Studie wurde eine signifikante Verminderung der LV-Torsion und der basalen LV-Rotation bei Patienten mit Mitralklappenstenose nachgewiesen. Möglicherweise sind strukturelle und anatomische Veränderungen, die im Verlauf der Progression der Mitralstenose auftreten, für diese eingeschränkte Beweglichkeit ursächlich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Padmavati S (2001) Rheumatic fever and rheumatic heart disease in India at the turn of the century. Indian Heart J 53:35–37

    CAS  PubMed  Google Scholar 

  2. Chandrashekhar Y, Westaby S, Narula J (2009) Mitral stenosis. Lancet 374:1271–1283

    Article  CAS  PubMed  Google Scholar 

  3. Carabello BA (2005) Modern management of mitral stenosis. Circulation 112:432–437

    Article  PubMed  Google Scholar 

  4. Lee YS, Lee CP (1990) Ultrastructural pathological study of left ventricular myocardium in patients with isolated rheumatic mitral stenosis with normal or abnormal left ventricular function. Jpn Heart J 31:435–448

    Article  CAS  PubMed  Google Scholar 

  5. Sengupta PP, Mohan JC, Mehta V et al (2004) Effects of percutaneous mitral commissurotomy on longitudinal left ventricular dynamics in mitral stenosis: quantitative assessment by tissue velocity imaging. J Am Soc Echocardiogr 17:824–828

    Article  PubMed  Google Scholar 

  6. Biswas M, Sudhakar S, Nanda NC et al (2013) Two- and three-dimensional speckle tracking echocardiography: clinical applications and future directions. Echocardiography 30:88–105

    Article  PubMed  Google Scholar 

  7. Sengupta PP, Tajik AJ, Chandrasekaran K, Khandheria BK (2008) Twist mechanics of the left ventricle: principles and application. J Am Coll Cardiol Img 1:366–376

    Article  Google Scholar 

  8. Notomi Y, Popovic ZB, Yamada H et al (2008) Ventricular untwisting: a temporal link between left ventricular relaxation and suction. Am J Physiol Heart Circ Physiol 294:505–513

    Article  Google Scholar 

  9. Notomi Y, Setser RM, Shiota T et al (2005) Assessment of left ventricular torsional deformation by Doppler tissue imaging: validation study with tagged magnetic resonance imaging. Circulation 111:1141–1147

    Article  PubMed  Google Scholar 

  10. Helle-Valle T, Crosby J, Edvardsen T et al (2005) New noninvasive method for assessment of left ventricular rotation. Speckle tracking echocardiography. Circulation 112:3149–3156

    Article  PubMed  Google Scholar 

  11. Saito M, Okayama H, Yoshii T et al (2011) The differences in left ventricular torsional behavior between patients with hypertrophic cardiomyopathy and hypertensive heart disease. Int J Cardiol 150:301–306

    Article  PubMed  Google Scholar 

  12. Borg AN, Harrison JL, Argyle RA, Ray SG (2008) Left ventricular torsion in primary chronic mitral regurgitation. Heart 94:597–603

    Article  CAS  PubMed  Google Scholar 

  13. Han W, Xie MX, Wang XF et al (2008) Assessment of left ventricular torsion in patients with anterior wall myocardial infarction before and after revascularization using speckle tracking imaging. Chin Med J (Engl) 121:1543–1548

    Google Scholar 

  14. Fuchs E, Muller MF, Oswald H et al (2004) Cardiac rotation and relaxation in patients with chronic heart failure. Eur J Heart Fail 6:715–722

    Article  PubMed  Google Scholar 

  15. Lindqvist P, Zhao Y, Bajraktari G et al (2011) Aortic valve replacement normalizes left ventricular twist function. Interact Cardiovasc Thorac Surg 12:701–706

    Article  PubMed  Google Scholar 

  16. Heller SJ, Carleton RA (1970) Abnormal left ventricular contraction in patients with mitral stenosis. Circulation 42:1099–1190

    Article  CAS  PubMed  Google Scholar 

  17. Greenbaum RA, Ho SY, Gibson DG et al (1981) Left ventricular fiber architecture in man. Br Heart J 45:248–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Sengupta PP, Krishnamoorthy VK, Korineck J et al (2007) Left ventricular form and function revisited: applied translational science to cardiovascular ultrasound imaging. J Am Soc Echocardiogr 20:539–551

    Article  PubMed Central  PubMed  Google Scholar 

  19. Hansen DE, Daughters GT II, Alderman EL et al (1991) Effect of volume loading, pressure loading, and inotropic stimulation on left ventricular torsion in humans. Circulation 83:1315–1326

    Article  CAS  PubMed  Google Scholar 

  20. Maier S, Fischer S, McKinnon G et al (1992) Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation 86:1919–1928

    Article  CAS  PubMed  Google Scholar 

  21. Oxenham HC, Young AA, Cowan BR et al (2003) Age-related changes in myocardial relaxation using three-dimensional tagged magnetic resonance imaging. J Cardiovasc Magn Reson 5:421–430

    Article  PubMed  Google Scholar 

  22. Notomi Y, Lysyansky P, Setser RM et al (2005) Measurement of ventricular torsion by two-dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol 45:2034–2041

    Article  PubMed  Google Scholar 

  23. Notomi Y, Srinath G, Shiota T et al (2006) Maturational and adaptive modulation of left ventricular torsional biomechanics: doppler tissue imaging observation from infancy to adulthood. Circulation 113:2534–2541

    Article  PubMed  Google Scholar 

  24. Buchalter MB, Rademakers FE, Weiss JL et al (1994) Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res 28:629–635

    Article  CAS  PubMed  Google Scholar 

  25. Kang SJ, Lim HS, Choi BJ et al (2008) Longitudinal strain and torsion assessed by two-dimensional speckle tracking correlate with the serum level of tissue inhibitor of matrix metalloproteinase-1, a marker of myocardial fibrosis, in patients with hypertension. J Am Soc Echocardiogr 21:907–911

    Article  PubMed  Google Scholar 

  26. Sade LE, Demir O, Atar I, Müderrisoglu H, Ozin B (2008) Effect of mechanical dyssynchrony and cardiac resynchronization therapy on left ventricular rotational mechanics. Am J Cardiol 101:1163–1169

    Article  PubMed  Google Scholar 

  27. Biederman RW, Doyle M, Yamrozik J et al (2005) Physiologic compensation is supranormal in compensated aortic stenosis: does it return to normal after aortic valve replacement or is it blunted by coexistent coronary artery disease? An intramyocardial magnetic resonance imaging study. Circulation 112:I429–1436

    PubMed  Google Scholar 

  28. Laser KT, Haas NA, Jansen N et al (2009) Is torsion a suitable echocardiographic parameter to detect acute changes in left ventricular afterload in children? J Am Soc Echocardiogr 22:1121–1128

    Article  PubMed  Google Scholar 

  29. Jang JY, Woo JS, Kim WS et al (2010) Serial assessment of left ventricular remodeling by measurement of left ventricular torsion using speckle tracking echocardiography in patients with acute myocardial infarction. Am J Cardiol 106:917–923

    Article  PubMed  Google Scholar 

  30. Gash AK, Carabello BA, Cepin D, Spann JF (1983) Left ventricular ejection performance and systolic muscle function in patients with mitral stenosis. Circulation 67:148–154

    Article  CAS  PubMed  Google Scholar 

  31. Puwanant S, Park M, Popović ZB et al (2010) Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension. Circulation 121:259–266

    Article  PubMed Central  PubMed  Google Scholar 

  32. Lee TM, Su SF, Chen MF et al (1996) Changes of left ventricular function after percutaneous balloon mitral valvuloplasty in mitral stenosis with impaired left ventricular performance. Int J Cardiol 56:211–215

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. B. Kirilmaz, F. Asgun, and S. Saygi state that there are no conflicts of interest. All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Kirilmaz MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirilmaz, B., Asgun, F., Saygi, S. et al. Decreased left ventricular torsion in patients with isolated mitral stenosis. Herz 40, 123–128 (2015). https://doi.org/10.1007/s00059-013-3970-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-013-3970-4

Keywords

Schlüsselwörter

Navigation