Skip to main content
Log in

Mobilization of very small embryonic-like stem cells in acute coronary syndromes and stroke

Mobilisierung sehr kleiner, embryonalen Stammzellen ähnelnde Zellen bei akutem Koronarsyndrom und Schlaganfall

  • Main topic/CME
  • Published:
Herz Aims and scope Submit manuscript

Abstract

The bone marrow (BM) niche contains small heterogenous populations of cells which may contribute to cardiac and endothelial repair, including committed lineages [endothelial progenitor cells (EPCs), multipotent mesenchymal stromal cells (MSCs) and more primitive very small embryonic-like cells (VSELs) expressing pluripotent stem cell (PSC) markers (Oct-4, Nanog, SSEA-1)]. VSELs are present in BM, peripheral blood and some solid organs in mice and were recently identified in peripheral blood in patients with acute coronary syndromes and stroke. VSELs can be expanded in vitro and differentiated into cells from all three germ layers. This population of cells displays the morphology of primitive PSC (small size, open type chromatin, large nucleus, narrow rim of cytoplasm) and express PSC markers. The isolation of human VSELs is based on their size and presence of several surface markers (CXCR4, CD133, CD34) and lack of markers of hematopoietic lineage (lin, CD45). In acute myocardial infarction and ischemic stroke VSELs are rapidly mobilized into peripheral blood, and express increased levels of PSC markers as well as early cardiac (GATA-4, Nkx2.5/Csx), neural (GFAP, nestin, beta-III-tubulin, Olig1, Olig2, Sox2, Musashi) and endothelial lineage markers (VE-cadherin, von Willebrand factor). The number of VSELs mobilized in acute myocardial infarction is inversely correlated with left ventricular ejection fraction and the release of cardiac necrosis markers. Mobilization of these cells is also reduced in patients with diabetes and in the elderly. BM-derived VSELs were expanded and after cardiogenic pre-differentiation injected intramyocardially in mice models of myocardial infarction leading to improved left ventricular contractility. VSELs are probably progeny of epiblast cells which migrated to the BM and developing organs during embryonic development. The cells are present in a quiescent state in the adult BM and solid organs and might serve as a reserve pool of resident stem cells. VSELs are promising candidates for further pre-clinical and clinical studies on cellular cardiovascular therapy.

Zusammenfassung

Das Knochenmark enthält kleine heterogene Zellpopulationen, die an der kardialen und endothelialen Reparatur beteiligt sein dürften. Dazu gehören Zelllinien wie die endothelilalen Progenitorzellen (EPC), die multipotetente mesenchymalen Stromazellen (MSC) sowie noch primitivere sehr kleine Zellen, die embryonalen Stammzellen ähneln, sog. VSELs. Sie exprimieren die Marker pluripotenter Stammzellen (PSC) wie Oct-4, Nanog, SSEA-1. Diese VSELs finden sich im Knochenmark, im peripheren Blut und in einigen Organen bei der Maus. Sie konnten auch beim akuten Koronarsyndrom und Schlaganfall von Patienten gezeigt werden. VSELs können in vitro expandieren und in Zellen aller 3 Keimblätter differenzieren. Diese Zellpopulationen besitzen die Morphologie primitiver pluripotenter Stammzellen (kleine Größe, exponiertes Chromatin, großer Kern, schmaler Plasmasaum) und exprimieren auch deren Marker. Sie lassen sich auf Grund ihrer Größe und der Oberflächenmarker CXCR4, CD133, CD34 isolieren und sind durch das Fehlen von Markern hämatopoetischer Zellinien (lin. CD45) beschrieben. Beim akuten Herzinfarkt und beim ischämisch bedingten Schlaganfall werden VSELs rasch ins periphere Blut freigesetzt. Sie exprimieren dann vermehrt die Marker pluripotenter Stammzellen und der früher kardialen Zelllinien wie GATA4, Nkx2,5/C‘sx) nuraler Zelllinien wie GFAP, Neestin, β-III-Tubulin, Olig1, Olig 2, Sox2, Musashi) und endothlialer Zelllinien wie VE-Cadherin, Willbrand-Faktor. Die Zahl mobilisierter VSELs bei akutem Myokardinfarkt korreliert umgekehrt mit der Ejektionsfraktion und der Freisetzung kardialer Nekrosemarker. Die Mobilisierung von VSELs ist auch bei Patienten mit Diabetes und bei älteren Menschen vermindert. VSELs aus dem Knochenmarker wurden expandiert und nach kardiogener Prädifferenzierung ins Myokard von Mäusen mit Herzinfarkt eingebracht. Sie führten zu einer Verbesserung der linksventrikulären Kontraktion. Wahrscheinlich sind VSELs die Vorläuferzellen von Epiblasten, die in der Embryonalphase ins Knochenmark einwandern und an der Organentwicklung beteiligt sind. Im Ruhezustand befinden sie sich auch im adulten Knochenmark und in einigen Organen. Sie dürften eine Reserve für die residenten Stammzellen darstellen. VSELs sind deshalb Kandidaten für eine zelluläre Therapie zur Organregeneration bei präklinischen und klinischen Studien.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abdel-Latif A et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167:989–997

    Article  PubMed  Google Scholar 

  2. Dimmeler S, Burchfield J, Z AM (2008) Cell-based therapy of myocardial infarction. Arterioscler Thromb Vasc Biol 28:208–216

    Article  CAS  PubMed  Google Scholar 

  3. Peister A et al (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103(5):1662–1668

    Article  CAS  PubMed  Google Scholar 

  4. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74

    Article  CAS  PubMed  Google Scholar 

  5. Asahara T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–967

    Article  CAS  PubMed  Google Scholar 

  6. Shi Q et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92(2):362–367

    CAS  PubMed  Google Scholar 

  7. Kucia M et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20(5):857–869

    Article  CAS  PubMed  Google Scholar 

  8. Johnson J et al (2005) Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122(2):303–315

    Article  CAS  PubMed  Google Scholar 

  9. Nayernia K et al (2006) Derivation of male germ cells from bone marrow stem cells. Lab Invest 86(7):654–663

    Article  CAS  PubMed  Google Scholar 

  10. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1):9–20

    Article  CAS  PubMed  Google Scholar 

  11. Nagasawa T (2000) A chemokine, SDF-1/PBSF, and its receptor, CXC chemokine receptor 4, as mediators of hematopoiesis. Int J Hematol 72(4):408–411

    CAS  PubMed  Google Scholar 

  12. Kollet O et al (2003) HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 112(2):160–169

    CAS  PubMed  Google Scholar 

  13. Kucia M et al (2004) Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 95(12):1191–1199

    Article  CAS  PubMed  Google Scholar 

  14. Kucia M et al (2006) Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20(1):18–28

    Article  CAS  PubMed  Google Scholar 

  15. Kucia M et al (2006) The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner. Arch Immunol Ther Exp (Warsz) 54(2):121–135

    Article  Google Scholar 

  16. Kucia M et al (2006) Physiological and pathological consequences of identification of very small embryonic like (VSEL) stem cells in adult bone marrow. J Physiol Pharmacol 57(Suppl 5):5–18

    Google Scholar 

  17. Massa M et al (2005) Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105(1):199–206

    Article  CAS  PubMed  Google Scholar 

  18. Wojakowski W et al (2004) Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110(20):3213–3220

    Article  CAS  PubMed  Google Scholar 

  19. Krankel N et al (2008) Role of kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential. Circ Res 103(11):1335–1343

    Article  CAS  PubMed  Google Scholar 

  20. Kucia M et al (2005) Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 19(7):1118–1127

    Article  CAS  PubMed  Google Scholar 

  21. Wojakowski W et al (2009) Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 53(1):1–9

    Article  CAS  PubMed  Google Scholar 

  22. Paczkowska E et al (2009) Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 40(4):1237–1244

    Article  CAS  PubMed  Google Scholar 

  23. Tang XL et al (2010) Cardiac progenitor cells and bone marrow-derived very small embryonic-like stem cells for cardiac repair after myocardial infarction. Circ J 74(3):390–404

    Article  PubMed  Google Scholar 

  24. Kucia M et al (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23(7):879–894

    Article  CAS  PubMed  Google Scholar 

  25. Kucia MJ et al (2008) Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells 26(8):2083–2092

    Article  CAS  PubMed  Google Scholar 

  26. Orlandi A et al (2010) Long-term diabetes impairs repopulation of hematopoietic progenitor cells and dysregulates the cytokine expression in the bone marrow microenvironment in mice. Basic Res Cardiol

  27. Wojakowski W et al (2006) Mobilization of CD34(+), CD117(+), CXCR4(+), c-met(+) stem cells is correlated with left ventricular ejection fraction and plasma NT-proBNP levels in patients with acute myocardial infarction. Eur Heart J 27(3):283–289

    Article  CAS  PubMed  Google Scholar 

  28. Wojakowski W et al (2007) Cardiogenic differentiation of very small embryonic-like cells isolated from adult bone marrow. J Am Coll Cardiol (Suppl A) 49:43A

    Google Scholar 

  29. Shin DM et al (2009) Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia 23(11):2042–2051

    Article  CAS  PubMed  Google Scholar 

  30. Zuba-Surma EK et al (2008) Morphological characterization of very small embryonic-like stem cells (VSELs) by ImageStream system analysis. J Cell Mol Med 12(1):292–303

    Article  PubMed  Google Scholar 

  31. Zuba-Surma EK, Ratajczak MZ (2010) Overview of very small embryonic-like stem cells (VSELs) and methodology of their identification and isolation by flow cytometric methods. Curr Protoc Cytom Chapter 9: Unit9 29

    Google Scholar 

  32. Zuba-Surma EK et al (2008) Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry A 73A(12):1116–1127

    Article  CAS  PubMed  Google Scholar 

  33. Kucia M et al (2007) Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 21(2):297–303

    Article  CAS  PubMed  Google Scholar 

  34. Ratajczak MZ et al (2007) A hypothesis for an embryonic origin of pluripotent Oct-4(+) stem cells in adult bone marrow and other tissues. Leukemia 21(5):860–867

    CAS  PubMed  Google Scholar 

  35. Wojakowski W et al (2010) Cardiomyocyte differentiation of bone marrow-derived Oct-4+CXCR4+SSEA-1+ very small embryonic-like stem cells. Int J Oncol 37(2):237–247

    CAS  PubMed  Google Scholar 

  36. Dawn B et al (2008) Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells 26(6):1646–1655

    Article  PubMed  Google Scholar 

  37. Zuba-Surma EK et al (2010) Transplantation of expanded bone marrow-derived very small embryonic-like stem cells (VSEL-SCs) improves left ventricular function and remodeling after myocardial infarction. J Cell Mol Med [Epub ahead of print]

  38. Zuba-Surma EK et al. (2008) The reparative benefits of very small embryonic-like (VSEL) stem cells are sustained during long-term follow-up. Late-breaking basic science abstracts: from the American Heart Association Scientific Sessions 2008, New Orleans, Louisiana, November 8–12, 2008. Circ Res 103:1493–1501

    Article  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wojakowski MD, PhD.

Additional information

Funding: National Institutes of Health (R01 CA106281–01), European Union structural funds – Innovative Economy Operational Programme, grant No. POIG 01.02–00–109/09 “Innovative methods of stem cells applications in medicine” and Polish Ministry of Science and Higher Education grants 0651/P01/2007/32, 2422/P01/2007/32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojakowski, W., Ratajczak, M. & Tendera, M. Mobilization of very small embryonic-like stem cells in acute coronary syndromes and stroke. Herz 35, 467–473 (2010). https://doi.org/10.1007/s00059-010-3389-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-010-3389-0

Keywords

Schlüsselwörter

Navigation