Skip to main content
Log in

Artifacts in orthodontic bracket systems in cone-beam computed tomography and multislice computed tomography

Artefaktdarstellung kieferorthopädischer Brackets in der dentalen Volumentomographie und der Mehrschicht-Spiral-Computertomographie

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objectives

The purpose of this study was to quantify artifacts caused by different bracket systems in cone-beam computed tomography (CBCT) and multislice computed tomography (MSCT) scans.

Methods

Orthodontic brackets of four different systems were consecutively bonded to the surface of a residual molar on a human cadaveric mandible. One MSCT system and three CBCT units were used to scan each of the four bonded brackets, in addition to obtaining a blank reference scan of the tooth surface. All datasets were registered to the reference dataset using visualization software (Analyze 11.0® by AnalyzeDirect). Artifact-related reductions in image quality were expressed in percent of theoretical maximum standard deviations (SD) obtained for the gray values of the adjacent voxels, with higher percentages correlating more pronounced artifacts.

Results

Both the SD percentages for three defined line profiles and their mean values were almost invariably higher with the MSCT system than with the CBCT units. Looking into the individual SD percentages, two of the CBCT units (Pax Zenith 3D® and Picasso Trio®; both Vatech) produced higher values than the MSCT system (SOMATOM Definition AS+®; Siemens) in some line profiles. The titanium bracket, in particular, was associated with marked differences between the two scanner technologies, as the mean artifact intensities from this bracket were particularly high with the MSCT unit and relatively low with the CBCT units. The artifact intensities observed with the other three bracket systems varied widely depending on which scanner was used.

Conclusion

Different artifact intensities were noted depending on the composition of the bracket system and on the scanner technology (MSCT/CBCT). While the artifacts manifested themselves differently with different scanners, their adverse effects were comparable. However, given the variable severity of the artifacts observed depending on the materials scanned and the scanners used, a blanket recommendation for or against MSCT or CBCT units cannot be given on the basis of this study.

Zusammenfassung

Zielsetzung

Ziel der Studie war die Quantifizierung von Artefakten verschiedener Bracketsysteme in MSCT(Mehrschicht-Spiral-Computertomographie)- und DVT(dentale Volumentomographie)-Datensätzen.

Methode

Ein Molar in einem humanen Kieferpräparat wurde nacheinander mit Brackets 4 unterschiedlicher Bracketsysteme beklebt. Mit 3 verschiedenen DVT-Geräten und einem MSCT-Geräte wurden radiologische Volumenaufnahmen erstellt, die mithilfe der Software Analyze 11.0® zueinander registriert wurden. Der Ausprägungsgrad der Artefakte wurde in Prozent der theoretisch möglichen Standardabweichung (SD) der Grauwerte benachbarter Voxel angegeben, höhere Prozentwerte korrelierten mit einer stärkeren Beeinträchtigung durch Artefakte.

Ergebnisse

Die maximale Standardabweichung und die Mittelwerte der 3 Linienprofile waren beim MSCT fast durchweg größer als bei den DVT-Geräten. Betrachtet man die einzelnen Prozentwerte der maximalen Standardabweichung, so wiesen das Pax Zenith 3D® sowie das Picasso Trio® in einzelnen Linienprofilen geringfügig höhere Prozentwerte auf als das MSCT. Besonders deutlich waren die Unterschiede zwischen den Gerätegruppen hinsichtlich des Bracketsystems aus Titan: Während die Artefakte beim MSCT besonders stark ausgeprägt waren, verursachte das Titanbracket in der DVT die wenigsten Artefakte. Die übrigen Bracketsysteme zeigten in Abhängigkeit vom untersuchten Gerät sehr unterschiedliche Artefaktausprägungen.

Schlussfolgerungen

Der Ausprägungsgrad der Artefakte divergierte in Abhängigkeit von der Zusammensetzung des Brackets und dem untersuchten Gerätesystem. Die Artefakte äußerten sich in den Geräten unterschiedlich, insgesamt war die Beeinträchtigung allerdings vergleichbar. Eine pauschale Empfehlung für oder gegen MSCT- oder DVT-Geräte kann aufgrund dieser Studie allerdings nicht ausgesprochen werden, da der Ausprägungsgrad der Artefakte in Abhängigkeit vom Material und vom untersuchten Gerätesystem deutlich differierte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Bal M, Spies L (2006) Metal artifact reduction in CT using tissue-class modeling and adaptive prefiltering. Med Phys 33:2852–2859

    Article  PubMed  Google Scholar 

  2. Barrett J, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24:1679–1691

    Article  PubMed  Google Scholar 

  3. Berlemann U, Heini P, Müller U et al (1997) Reliability of pedicle screw assessment utilizing plain radiographs versus CT reconstruction. Eur Spine J 6:406–411

    Article  PubMed Central  PubMed  Google Scholar 

  4. Carrafiello G, Dizonno M, Colli V et al (2010) Comparative study of jaws with multislice computed tomography and cone-beam computed tomography. Radiol Med 115:600–611

    Article  PubMed  Google Scholar 

  5. Coppenrath E, Draenert F, Lechel U et al (2008) Schnittbildverfahren zur dentomaxillofacialen Diagnostik: Dosisvergleich von Dental-MSCT und New Tom 9000 DVT. Fortschr Röntgenstr 180:396–401

    Article  Google Scholar 

  6. Damstra J, Fourie Z, Huddleston Slater JJ et al (2010) Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes. Am J Orthod Dentofacial Orthop 137(1):16.e1–16.e6 (discussion 16–17)

    Article  PubMed  Google Scholar 

  7. De Man B (2001) Iterative reconstruction for reduction of metal artifacts in computed tomography. Dissertation, University of Leuven, Belgium

  8. Draenert FG, Coppenrath E, Herzog P et al (2007) Beam hardening artefacts occur in dental implant scans with the NewTom cone beam CT but not with the dental 4-row multidetector CT. Dentomaxillofac Radiol 36:198–203

    Article  PubMed  Google Scholar 

  9. Farman AG (2005) ALARA still aplies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 100(4):395–397

    Article  PubMed  Google Scholar 

  10. Gayer A (2009) Quantifizierung von Metallartefakten in der Dental-Computertomographie. Diplomarbeit, Universitätsklinik für Radiodiagnostik Medizinische Universität Wien. http://ub.meduniwien.ac.at/edocmed/?f_file=1&f_ac=AC07452305

  11. Goldman LW (2007) Principles of CT: radiation dose and image quality. J Nucl Med Technol 35:213–225

    Article  PubMed  Google Scholar 

  12. Holberg C, Steinhäuser S, Geis P, Rudzki-Janson I (2005) Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop 66:434–444

    Article  PubMed  Google Scholar 

  13. Horner K, Islam M, Flygare L et al (2009) Basic principles for use of dental cone beam CT: consensus guidelines of the European Academy of Dental and Maxillofacial Radiology. Dentomaxillofac Radiol 38:187–195

    Article  PubMed  Google Scholar 

  14. Imai K (2007) Analysis of streak artefacts on CT images using statistics of extremes. Br J Radiol 80:911–918

    Article  PubMed  Google Scholar 

  15. Imai K, Ikeda M, Enchi Y, Niimi T (2009) Statistical characteristics of streak artifacts on CT images: relationship between streak artifacts and mA s values. Med Phys 36:492–499

    Article  PubMed  Google Scholar 

  16. Kalender WA, Hebel R, Ebersberger J (1987) Reduction of CT artifacts caused by metallic implants. Radiology 164(2):576–577

    Article  PubMed  Google Scholar 

  17. Klingenbeck-Regn K, Schaller S, Flohr T et al (1999) Subsecond multi-slice computed tomography: basics and applications. Eur J Radiol 31:110–124

    Article  PubMed  Google Scholar 

  18. Kyriakou Y, Kolditz D, Langner O et al (2011) Digital volume tomography (DVT) and multislice spiral CT (MSCT): an objective examination of dose and image quality. Rofo 183(2):144–153

    Article  PubMed  Google Scholar 

  19. Lee R, Azevedo B, Shintaku W et al (2008) Patient movement in three different CBCT units. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105:e55

    Article  Google Scholar 

  20. Naitoh M, Saburi K, Gotoh K et al (2013) Metal artifacts from posterior mandibular implants as seen in CBCT. Implant Dent 22(2):151–154

    Article  PubMed  Google Scholar 

  21. Pauwels R, Stamatakis H, Bosmans H et al (2013) Quantification of metal artifacts on cone beam computed tomography images. Clin Oral Implants Res 24:94–99

    Article  PubMed  Google Scholar 

  22. Perrella A, Lopes PM, Rocha RG et al (2010) Influence of dental metallic artifact from multislice CT in the assessment of simulated mandibular lesions. J Appl Oral Sci 18:149–154

    Article  PubMed  Google Scholar 

  23. Prell D, KyriakouY, Beister M, Kalender W (2009) A novel forward projection-based metal artifact reduction method for flat-detector computed tomography. Phys Med Biol 54(21):6575–6591

    Article  PubMed  Google Scholar 

  24. Razavi T, Palmer RM, Davies J et al (2010) Accuracy of measuring the cortical bone thickness adjacent to dental implants using cone beam computed tomography. Clin Oral Implants Res 21:718–725

    Article  PubMed  Google Scholar 

  25. Sanders MA, Hoyjberg C, Chu CB et al (2007) Common orthodontic appliances cause artifacts that degrade the diagnostic quality of CBCT images. J Calif Dent Assoc 35:850–857

    PubMed  Google Scholar 

  26. Schulze RKW, Berndt D, d’Hoedt B (2010) On cone-beam computed tomography artifacts induced by titanium implants. Clin Oral Implants Res 21:100–107

    Article  PubMed  Google Scholar 

  27. Schulze R, Heil U, Grob D et al (2011) Artefacts in CBCT: a review. Dentomaxillofac Radiol 40:265–273

    Article  PubMed Central  PubMed  Google Scholar 

  28. Schulze R (2013) s2k-Leitlinie: Dentale digitale Volumentomographie. http://www.awmf.org/uploads/tx_szleitlinien/083-005l_S2k_Dentale_Volumentomographie_2013-10.pdf. Zugegriffen 25. November 2014

  29. Williamson JF, Whiting BR, Benac J et al (2002) Prospects for quantitative computed tomography imaging in the presence of foreign metal bodies using statistical image reconstruction. Med Phys 29:2404–2418

    Article  PubMed  Google Scholar 

  30. Zhang Y, Zhang L, Zhu XR et al (2007) Reducing metal artifacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys 67:924–932

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. V. Hirschinger, S. Hanke, U. Hirschfelder, and E. Hofmann state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Einhaltung ethischer Richtlinien

Interessenkonflikt. V. Hirschinger, S. Hanke, U. Hirschfelder und E. Hofmann geben an, dass kein Interessenkonflikt besteht.

Der Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Hofmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirschinger, V., Hanke, S., Hirschfelder, U. et al. Artifacts in orthodontic bracket systems in cone-beam computed tomography and multislice computed tomography. J Orofac Orthop 76, 152–163 (2015). https://doi.org/10.1007/s00056-014-0278-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-014-0278-9

Keywords

Schlüsselwörter

Navigation