Skip to main content
Log in

Shear bond strength of a self-adhering flowable composite when used for lingual retainer bonding

Scherhaftfestigkeit von lingualen Retainern nach Befestigung mit einem selbsthaftenden fließfähigen Komposit

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective

The goal of this work was to assess the shear bond strength (SBS) and fracture mode of a self-adhering flowable composite when used after thermocycling for lingual retainer bonding.

Materials and methods

A total of 80 human mandibular incisor teeth were categorized into four equal groups: group 1: Vertise™ Flow (VF) without acid etching; group 2: VF with acid etching; group 3: VF with a self-etching bonding agent accompanied by an additional acid etching; group 4: Transbond LR control. Either VF or Transbond LR was applied to the lingual surface of the teeth by packing the material into cylindrical plastic matrices to simulate the lingual retainer bonding area. After all teeth were thermocycled (5000 cycles, 5 and 55 °C), fracture modes were examined under ×20 magnification. The SBS data were assessed via analysis of variance (ANOVA) and Tukey’s tests. Fracture modes were analyzed by the χ2 test at a significance level of 0.05.

Results

Statistically significant differences in SBS values between groups (p < 0.001) were observed. Group 4 exhibited the highest (14.63 ± 1.36 MPa) and group 1 the lowest SBS (2.67 ± 1.35 MPa) values. Statistically significant differences were noted in fracture modes between groups 1, 3, and 4 (p<0.001). In all the self-adhering flowable composite groups, the adhesive type (tooth–composite interface) fracture occurred more frequently than cohesive and mixed-type fractures.

Conclusion

When applied to bond lingual retainers to unetched enamel or with self-etching bonding agent accompanied by an additional acid etching, Vertise™ Flow resulted in a significant decrease in bond strength.

Zusammenfassung

Studienziel

Ziel der Studie war die Beurteilung der Scherhaftfestigkeit von lingualen Retainern und der damit verbundenen Bruchmuster nach adhäsiver Befestigung mit einem selbsthaftenden fließfähigen Komposit (VertiseTM Flow, Kerr) und nach Temperaturwechselbelastung.

Material und Methode

Insgesamt 80 menschliche Unterkieferschneidezähne wurden zur Prüfung unterschiedlicher Adhäsivtechniken in 4 gleich große Gruppen unterteilt. In 3 Gruppen erfolgte die Befestigung mit VertiseTM Flow (ohne bzw. mit Säureätzen bzw. nach Anwendung eines selbstätzendem Haftvermittlers mit zusätzlichem Säureätzen) und in einer Gruppe zur Kontrolle mit TransbondTM LR (3M Unitek). Zur Simulation eines Retainer-Haftareals wurde das Adhäsiv jeweils in einen Kunststoffzylinder gefüllt auf die Lingualfläche geklebt. Nach Temperaturwechselbelastung (5000 Zyklen, 5–55 °C) wurden diese Prüfkörper auf Bruch scherbelastet und bei 20-facher Vergrößerung die Bruchstellen lokalisiert. Die Scherhaftfestigkeiten wurden per Varianzanalyse und Tukey-Test analysiert, die Bruchmuster per χ2-Test (Signifikanzniveau: 0,05).

Resultate

Die Scherhaftfestigkeiten offenbarten signifikante Gruppenunterschiede (p < 0,001). Die Werte waren in der Kontrollgruppe am höchsten (14,63 ± 1,36 MPa), in der Vertise-Flow-Gruppe ohne Säureätzen an niedrigsten (2,67 ± 1,35 MPa). Signifikante Unterschiede bei den Bruchtypen zeigten sich zwischen der Vertise-Flow-Gruppe ohne Säureätzen, der Vertise-Flow-Gruppe mit selbstätzendem Haftvermittler und zusätzlichem Säureätzen sowie der Kontrollgruppe (p < 0,001). In allen Gruppen mit dem selbsthaftenden fließfähigen Komposit ereigneten sich Adhäsionsbrüche (zwischen Zahn und Komposit) häufiger als Kohäsionsbrüche und Mischbrüche.

Schlussfolgerung

Erfolgte die adhäsive Befestigung mit VertiseTM Flow am ungeätzten Schmelz oder nach Anwendung eines selbstätzenden Haftvermittlers mit zusätzlichem Säureätzen, so reduzierte sich Haftfestigkeit der lingualen Retainer signifikant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bearn DR, McCabe JF, Gordon PH et al (1997) Bonded orthodontic retainers: the wire-composite interface. Am J Orthod Dentofacial Orthop 111:67–74

    Article  PubMed  Google Scholar 

  2. Bearn DR (1995) Bonded orthodontic retainers: a review. Am J Orthod Dentofacial Orthop 108:207–213

    Article  PubMed  Google Scholar 

  3. Bryan DC, Sherriff M (1995) An in vitro comparison between a bonded retainer system and a directly bonded flexible spiral wire retainer. Eur J Orthod 17:143–151

    Article  PubMed  Google Scholar 

  4. Cehreli ZC, Kecik D, Kocadereli I (2005) Effect of self-etching primer and adhesive formulations on the shear bond strength of orthodontic brackets. Am J Orthod Dentofacial Orthop 127:573–579

    Article  PubMed  Google Scholar 

  5. Cooke ME, Sherriff M (2010) Debonding force and deformation of two multi-stranded lingual retainer wires bonded to incisor enamel: an in vitro study. Eur J Orthod 32:741–746

    Article  PubMed  Google Scholar 

  6. De Munck J, Van Landuyt K, Coutinho E et al (2005) Micro-tensile bond strength of adhesives bonded to Class-I cavity-bottom dentin after thermo-cycling. Dent Mater 21:999–1007

    Article  Google Scholar 

  7. DeHoff PH, Anusavice KJ, Wang Z (1995) Three-dimensional finite element analysis of the shear bond test. Dent Mater 11:126–131

    Article  PubMed  Google Scholar 

  8. Elaut J, Asscherickx K, Vande Vannet B et al (2002) Flowable composites for bonding lingual retainers. J Clin Orthod 36:597–598

    PubMed  Google Scholar 

  9. Ferrari M, Vichi A (o J) A 12-month Practice-based clinical evaluation of a self-adhering flowable composite in class II liner restorations. http://fr.kerrdental.ch/media/Products/ProductFamily/2846/fr-FR/Documents/95175/VertiseFlow_whitepaper201108_final.pdf

  10. Gale MS, Darvell BW (1999) Thermal cycling procedures for laboratory testing of dental restorations. J Dent 27:89–99

    Article  PubMed  Google Scholar 

  11. Goracci C, Margvelashvili M, Giovannetti A et al (2013) Shear bond strength of orthodontic brackets bonded with a new self-adhering flowable resin composite. Clin Oral Investig 17:609–617

    Article  PubMed  Google Scholar 

  12. Grubisa HS, Heo G, Raboud D et al (2004) An evaluation and comparison of orthodontic bracket bond strengths achieved with self-etching primer. Am J Orthod Dentofacial Orthop 126:213–219

    Article  PubMed  Google Scholar 

  13. Hashimoto M, Ohno H, Yoshida E et al (2003) Resin-enamel bonds made with self-etching primers on ground enamel. Eur J Oral Sci 111:447–453

    Article  PubMed  Google Scholar 

  14. Holzmeier M, Schaubmayr M, Dasch W et al (2008) A new generation of self-etching adhesives: comparison with traditional acid etch technique. J Orofac Orthop 69:78–93

    Article  PubMed  Google Scholar 

  15. International Organization for Standardization. ISO TR 11405-1994 dental materials – guidance on testing of adhesion to tooth structure

  16. Isman E, Karaarslan ES, Oksayan R et al (2012) Inadequate shear bond strengths of self-etch, self-adhesive systems for secure orthodontic bonding. Dent Mater J 31:947–953

    Article  PubMed  Google Scholar 

  17. Kanemura N, Sano H, Tagami J (1999) Tensile bond strength to and SEM evaluation of ground and intact enamel surfaces. J Dent 27:523–530

    Article  PubMed  Google Scholar 

  18. Lalani N, Foley TF, Voth R et al (2000) Polymerization with the argon laser: curing time and shear bond strength. Angle Orthod 70:28–33

    PubMed  Google Scholar 

  19. Nanda R, Burstone CJ (1993) Retention and stability in orthodontics. Saunders, Philadelphia

  20. Nanda RS, Nanda SK (1992) Considerations of dentofacial growth in long-term retention and stability: is active retention needed? Am J Orthod Dentofacial Orthop 101:297–302

    Article  PubMed  Google Scholar 

  21. Nirupama C, Kavitha S, Jacob J et al (2012) Comparison of shear bond strength of hydrophilic bonding materials: an in vitro study. J Contemp Dent Pract 13:637–643

    Article  PubMed  Google Scholar 

  22. Oesterle LJ, Shellhart WC (2008) Effect of aging on the shear bond strength of orthodontic brackets. Am J Orthod Dentofacial Orthop 133:716–720

    Article  PubMed  Google Scholar 

  23. Pecora N, Yaman P, Dennison J et al (2002) Comparison of shear bond strength relative to two testing devices. J Prosthet Dent 88:511–515

    Article  PubMed  Google Scholar 

  24. Reicheneder CA, Gedrange T, Lange A et al (2009) Shear and tensile bond strength comparison of various contemporary orthodontic adhesive systems: an in-vitro study. Am J Orthod Dentofacial Orthop 135:422.e1–e6

    Article  PubMed  Google Scholar 

  25. Reynolds IR (1975) A review of direct orthodontic bonding. Br J Orthod 2:171–178

    Google Scholar 

  26. Riedel RA (1960) A review of the retention problem. Angle Orthod 30:179–199

    PubMed  Google Scholar 

  27. Tabrizi S, Salemis E, Usumez S (2010) Flowable composites for bonding orthodontic retainers. Angle Orthod 80:195–200

    Article  PubMed  Google Scholar 

  28. Theodorakopoulou LP, Sadowsky PL, Jacobson A et al (2004) Evaluation of the debonding characteristics of 2 ceramic brackets: an in vitro study. Am J Orthod Dentofacial Orthop 125:329–336

    Article  PubMed  Google Scholar 

  29. Turgut MD, Attar N, Korkmaz Y et al (2011) Comparison of shear bond strengths of orthodontic brackets bonded with flowable composites. Dent Mater J 30:66–71

    Article  PubMed  Google Scholar 

  30. Ulker M, Uysal T, Ramoglu SI et al (2009) Bond strengths of an antibacterial monomer-containing adhesive system applied with and without acid etching for lingual retainer bonding. Eur J Orthod 31:658–663

    Article  PubMed  Google Scholar 

  31. Van Landuyt KL, Kanumilli P, De Munck J et al (2006) Bond strength of a mild self-etch adhesive with and without prior acid-etching. J Dent 34:77–85

    Article  Google Scholar 

  32. Van Noort R, Noroozi S, Howard IC et al (1989) A critique of bond strength measurements. J Dent 17:61–67

    Article  Google Scholar 

  33. Vichi A, Goracci C, Ferrari M (2010) Clinical study of the self-adhering flowable composite resin Vertise flow in class I restorations: six-month follow-up. Int Dent SA 12:14–23

    Google Scholar 

  34. Wajdowicz MN, Vandewalle KS, Means MT (2012) Shear bond strength of new self-adhesive flowable composite resins. Gen Dent 60:e104–e108

    PubMed  Google Scholar 

  35. Yazici AR, Yildirim Z, Ertan A et al (2012) Bond strength of one-step self-etch adhesives and their predecessors to ground versus unground enamel. Eur J Dent 6:280–286

    PubMed Central  PubMed  Google Scholar 

  36. Yuasa T, Iijima M, Ito S et al (2010) Effects of long-term storage and thermocycling on bond strength of two self-etching primer adhesive systems. Eur J Orthod 32:285–290

    Article  PubMed  Google Scholar 

  37. Zachrisson BU (1977) Clinical experience with direct-bonded orthodontic retainers. Am J Orthod 71:440–448

    Article  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. I. Veli, M. Akin, E. Kucukyilmaz, and T. Uysald state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Einhaltung ethischer Richtlinien

Interessenkonflikt. I. Veli, M. Akin, E. Kucukyilmaz und T. Uysald geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Uysal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veli, I., Akin, M., Kucukyilmaz, E. et al. Shear bond strength of a self-adhering flowable composite when used for lingual retainer bonding. J Orofac Orthop 75, 374–383 (2014). https://doi.org/10.1007/s00056-014-0231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-014-0231-y

Keywords

Schlüsselwörter

Navigation