Skip to main content
Log in

Differing patterns of sequestration of iridoid glycosides in the Mecininae (Coleoptera, Curculionidae)

  • Research Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

We analyzed several species of the weevil family Mecininae (Coleoptera, Curculionidae) that all feed on iridoid glycoside (IG) containing plants of the Plantaginaceae to investigate whether the beetles sequester these deterrent substances from their host plants. Within the Mecininae two genera of the tribe Cionini were found to sequester aucubin and catalpol: Cionus Clairville and Schellenberg and Cleopus Dejean. Both analyzed genera of the Mecinini, Mecinus Germar and Rhinusa Stephens, do not sequester IGs although the compounds are present in their food plants. They thus represent the first case of specialists on IG plants that have not evolved adaptations to use the compounds. However, in contrast to the Cionini these genera have a hidden lifestyle, so that their need for defence might be lower. Both Cionus and Cleopus, sequester catalpol with a higher efficiency than aucubin. However, in contrast to Cionus species, Cleopus species only sequester catalpol. In species feeding on Scrophularia, the aucubin concentration is higher while in beetles on Verbascum catalpol is usually dominating. This pattern can also be detected in the only species living on both plants, Cionus hortulanus. The ability to sequester IGs must have a single origin at the base of the sister genera Cionus and Cleopus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baden CU, Dobler S (2009) Potential benefits of iridoid glycoside sequestration in Longitarsus melanocephalus (Coleoptera, Chrysomelidae). Basic Appl Ecol 10:27–33

    Article  CAS  Google Scholar 

  • Baden CU, Geier T, Franke S, Dobler S (2011) Sequestered iridoid glycosides—highly effective deterrents against ant predators? Biochem Syst Ecol 39:897–911

    Article  CAS  Google Scholar 

  • Belofsky G, Bowers MD, Janzen S, Stermitz F (1989) Iridoid glycosides of Aureolaria flava and their sequestration by Euphydryas phaeton butterflies. Phytochemistry 28:1601–1604

    Article  CAS  Google Scholar 

  • Boros CA, Stermitz FR (1991) Iridoids. An updated review, part II. J Nat Prod 54:1173–1246

    Article  CAS  Google Scholar 

  • Boros CA, Stermitz FR, McFarland N (1991) Processing of iridoid glycoside antirrhinoside from Maurandya antirrhiniflora (Scrophulariaceae) by Meris paradoxa (Geometridae) and Lepipolys spp. (Noctuidae). J Chem Ecol 17:1123–1133

    Article  CAS  Google Scholar 

  • Bowers MD (1981) Unpalatability as a defense strategy of western checkerspot butterflies (Euphydryas, Nymphalidae). Evolution 35:367–375

    Article  Google Scholar 

  • Bowers MD (1991) Iridoid glycosides. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with plant secondary metabolites, vol I. Academic Press, San Diego, pp 251–295

    Google Scholar 

  • Bowers MD (2003) Hostplant suitability and defensive chemistry of the Catalpa shpinx Ceratomia catalpae. J Chem Ecol 29:2359–2367

    Article  PubMed  CAS  Google Scholar 

  • Bowers MD, Collinge SK (1992) Fate of iridoid glycosides in different life stages of the buckeye, Junonia coenia (Lepidoptera, Nymphalidae). J Chem Ecol 18:817–831

    Article  CAS  Google Scholar 

  • Bowers MD, Farley S (1990) The behaviour of gray jays, Perisoreus canadensis, towards palatable and unpalatable Lepidoptera. Anim Behav 39:699–705

    Article  Google Scholar 

  • Bowers MD, Puttick GM (1986) Fate of ingested iridoid glycosides in lepidopteran herbivores. J Chem Ecol 12:169–178

    Article  CAS  Google Scholar 

  • Bowers MD, Stamp NE (1997) Effect of hostplant genotype and predators on iridoid glycoside content of pupae of a specialist insect herbivore, Junonia coenia (Nymphalidae). Biochem Syst Ecol 12:571–580

    Article  Google Scholar 

  • Caldara R (2001) Phylogenetic analysis and higher classification of the tribe Mecinini (Coleoptera, Curculionidae, Curculioninae). Koleopterologische Rundschau 71:171–203

    Google Scholar 

  • Damtoft S (1994) Biosynthesis of Catalpol. Phytochemistry 35:1187–1189

    Article  CAS  Google Scholar 

  • Davini E, Iavarone C, Trogolo C, Aureli P, Pasolini B (1986) The quantitative isolation and antimicrobial activity of the aglycone of aucubin. Phytochemistry 25:2420–2422

    Article  CAS  Google Scholar 

  • De La Fuente MA, Dyer LA, Bowers MD (1995) The iridoid glycoside, catalpol, as a deterrent to the predator Camponotus floridanus (Formicidae). Chemoecology 5(6):13–18

    Google Scholar 

  • Dobler S (2001) Evolutionary aspects of defense by recycled plant compounds in herbivorous insects. Basic Appl Ecol 2:15–26

    Article  CAS  Google Scholar 

  • Dobler S, Petschenka G, Pankoke HC (2011) Coping with toxic plant compounds—the insect’s perspective on iridoid glycosides and cardenolides. Phytochemistry 72:1593–1604

    Article  PubMed  CAS  Google Scholar 

  • Dyer LA, Bowers MD (1996) The importance of sequestered iridoid glycosides as a defense against an ant predator. J Chem Ecol 22:1527–1539

    Article  CAS  Google Scholar 

  • El-Naggar LJ, Beal JL (1980) Iridoids. A review. J Nat Prod 43:649–706

    Article  PubMed  CAS  Google Scholar 

  • Freude H, Harde KW, Lohse GA (1983) Die Käfer Mitteleuropas. Band 11. Goecke and Evers, Krefeld

  • Gardner DR, Stermitz FR (1988) Host plant utilization and iridoid glycoside sequestration by Euphydryas anicia (Lepidoptera, Nymphalidae). J Chem Ecol 14:2147–2168

    Article  CAS  Google Scholar 

  • Ishiguro K, Yamaki M, Takagi S (1982) Studies on the iridoid related compounds. I. On antimicrobial activity of aucubigenin and certain iridoid aglycones. Yakugaku Zasshi 102:755–759

    PubMed  CAS  Google Scholar 

  • Jamieson MA, Bowers MD (2010) Iridoid glycoside variation in the invasive plant Dalmatian toadflax, Linaria dalmatica (Plantaginacae), and sequestration by the biological control agent, Calophasia lunula. J Chem Ecol 36:70–79

    Article  PubMed  CAS  Google Scholar 

  • Kim DH, Kim BR, Kim JY, Jeong YC (2000) Mechanism of covalent adduct formation of aucubin to proteins. Toxicol Lett 114:181–188

    Article  PubMed  CAS  Google Scholar 

  • Opitz SEW, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154

    Article  CAS  Google Scholar 

  • Opitz SEW, Jensen SR, Müller C (2010) Sequestration of glucosinolates and iridoid glucosides in sawfly species of the genus Athalia and their role in defense against ants. J Chem Ecol 36:148–157

    Article  PubMed  CAS  Google Scholar 

  • Prell H (1925) 4. Zur Biologie der Blattschaber (Cionini). I. Die Enstehung der larvalen Gallerthülle und des Puppenkokons. Zoologischer Anzeiger 62:3–48

    Google Scholar 

  • Räther M (1989) Notes on four weevils in the tribe Cionini (Coleoptera: Curculionidae) associated with Scrophularia nodosa L. (Scrophulariaceae). Part I: biology and ecology of the weevils. Bonner zoologische Beiträge 40:109–121

    Google Scholar 

  • Scherf H (1964) Die Entwicklungsstadien der mitteleuropäischen Curculioniden (Morphologie, Bionomie, Ökologie). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 506:1–335

    Google Scholar 

  • Strohmeyer HH, Stamp NE, Jarzomski CM, Bowers MD (1998) Prey specis and prey diet affect growth of invertebrate predators. Ecol Entomol 23:68–79

    Article  Google Scholar 

  • Theodoratus DH, Bowers MD (1999) Effects of sequestered iridoid glycosides on prey choice of the prairie wolf spider Lycosa carolinensis. J Chem Ecol 25:283–295

    Article  CAS  Google Scholar 

  • Willinger G, Dobler S (2001) Selective sequestration of iridoid glycosides from their host plant in Longitarsus flea beetles. Biochem Syst Ecol 29:335–346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank all collectors (especially Regina Jäckel and Jan-Jakob Laux), the members of the Verein für Naturwissenschaftliche Heimatforschung zu Hamburg e.V. for indicating collecting points, Søren Jensen for an authentic sample of antirrhinoside and the Deutsche Forschungsgemeinschaft for financial support (DO527/6-1). Stephan Franke passed away December 28th 2010—his scientific achievements keep him among us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Ulrich Baden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baden, C.U., Franke, S. & Dobler, S. Differing patterns of sequestration of iridoid glycosides in the Mecininae (Coleoptera, Curculionidae). Chemoecology 22, 113–118 (2012). https://doi.org/10.1007/s00049-012-0103-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-012-0103-0

Keywords

Navigation