Skip to main content

Advertisement

Log in

4,5-diazafenylfluorene-rhodanine conjugates promote anoikis in A375 cells via inhibiting PPAR-γ expression

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Regulation of PPAR-γ protein activity has anti-tumor effects, both activation, and inhibition. Based on the PPAR-γ protein and previous work in our laboratory, we designed and synthesized a series of 4,5-diazafenylfluorene-rhodanine conjugates and explored their anti-tumor activity and mechanism in vitro. This series of 4,5-diazafenylfluorene-rhodanine conjugates could induce rapid ubiquitin degradation of PPAR-γ to inhibit its function. And the cytotoxicity in vitro showed that these compounds had selective cytotoxicity to several kinds of tumor cells. Among them, the compound YINQ-9 possessed the best activity against melanoma A375 cells, with an IC50 value of 4.11 μM. Further experiments demonstrated that YINQ-9 could affect the A375 cell’s adhesion to the extracellular matrix and induce anoikis by inhibiting the MAPK/ERK pathway and activating the mitochondrial endogenous apoptosis pathway. This series of novel 4,5-diazafenylfluorene-rhodanine conjugates could inhibit the function of PPAR-γ by inducing ubiquitin degradation, thus inducing A375 cells to anoikis. This study provides a new direction for the design of anti-tumor drugs targeting PPAR-γ.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

BCA:

Butyleyanoacrylate

CCK-8:

Cell Counting Kit-8

DAPI:

4,6-diamidino-2-phenylindole

DMSO:

Dimethyl sulfoxide

ECM:

Extracellular matrix

PI:

Propidium Iodide

PPARs:

Peroxisome proliferators-activated receptors

TZD:

Thiazolidinedione

References

  1. Takada I, Makishima M. Peroxisome proliferator-activated receptor agonists and antagonists: a patent review (2014-present). Expert Opin Ther Pat. 2020;30:1–13. https://doi.org/10.1080/13543776.2020.1703952.

    Article  CAS  PubMed  Google Scholar 

  2. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–35.

    Article  CAS  Google Scholar 

  3. Wang YL, Miao Q, To live or to die: Prosurvival activity of PPARγ in cancers. PPAR Res. 2014. https://doi.org/10.1155/2008/209629.

  4. Gervois P, Fruchart JC, Staels B. Inflammation, dyslipidaemia, diabetes and PPARs: pharmacological interest of dual PPARα and PPARγ agonists. Int J Clin Pr Suppl. 2010;58:22–9.

    Article  Google Scholar 

  5. Moller DE, Berger JP. Role of PPARs in the regulation of obesity-related insulin sensitivity and inflammation. Int J Obes. 2004;3:17–21.

    Google Scholar 

  6. Rumi M, Ishihara S, Kazumori H, Kadowaki Y, Kinoshita Y. Can PPARγ ligands be used in cancer therapy? Curr Med Chem. 2004;4:465–77.

    CAS  Google Scholar 

  7. Kotta-Loizou I, Giaginis C, Theocharis S. The role of peroxisome proliferator-activated receptor-γ in breast cancer. Anti-Cancer Agent Me. 2012;12:1025–44. https://doi.org/10.2174/187152012803529664.

    Article  CAS  Google Scholar 

  8. Li Y, Meng Y, Li H, Li J, Fu J, Liu Y, et al. Growth inhibition and differentiation induced by peroxisome proliferator-activated receptor gamma ligand rosiglitazone in human melanoma cell line A375. Med Oncol. 2006;23:393–402.

    Article  CAS  Google Scholar 

  9. Apostoli AJ, Roche JM, Schneider MM, SenGupta SK, Di Lena MA, Rubino RE, et al. Opposing roles for mammary epithelial-specific PPARgamma signaling and activation during breast tumour progression. Mol Cancer. 2015;14:85–96. https://doi.org/10.1186/s12943-015-0347-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Elrod HA, Sun SY. PPARgamma and Apoptosis in Cancer. PPAR Res. 2008. https://doi.org/10.1155/2008/704165.

  11. Robbins ME, Linard C, Panigrahy D. PPARs and Anticancer Therapies. PPAR Res. 2010. https://doi.org/10.1155/2010/536415.

  12. Tachibana K, Yamasaki D, Ishimoto K, Doi T. The Role of PPARs in Cancer. PPAR Res. 2008. https://doi.org/10.1155/2008/102737.

  13. Botton T, Puissant A, Bahadoran P, Annicotte JS, Fajas L, Ortonne JP, et al. In vitro and in vivo anti-melanoma effects of ciglitazone. J Invest Dermatol. 2009;129:1208–18. https://doi.org/10.1038/jid.2008.346.

    Article  CAS  PubMed  Google Scholar 

  14. Yamamoto K, Tamura T, Henmi K, Kuboyama T, Yanagisawa A, Matsubara M, et al. Development of Dihydrodibenzooxepine Peroxisome Proliferator-Activated Receptor (PPAR) Gamma ligands of a novel binding mode as anticancer agents: effective mimicry of chiral structures by Olefinic E/ Z-isomers. J Med Chem. 2018;61:10067–83. https://doi.org/10.1021/acs.jmedchem.8b01200.

    Article  CAS  PubMed  Google Scholar 

  15. Wei S, Yang J, Lee SL, Kulp SK, Chen CS. PPARgamma-independent antitumor effects of thiazolidinediones. Cancer Lett. 2009;276:119–24. https://doi.org/10.1016/j.canlet.2008.08.008.

    Article  CAS  PubMed  Google Scholar 

  16. Yan S, Yang X, Chen T, Xi Z, Jiang X. The PPARgamma agonist Troglitazone induces autophagy, apoptosis and necroptosis in bladder cancer cells. Cancer Gene Ther. 2014;21:188–93. https://doi.org/10.1038/cgt.2014.16.

    Article  CAS  PubMed  Google Scholar 

  17. Wang PS, Chou FS, Porchia L, Saji M, Pinzone JJ. Troglitazone inhibits cell migration, adhesion, and spreading by modulating cytoskeletal rearrangement in human breast cancer cells. Mol Carcinog. 2008;47:905–15. https://doi.org/10.1002/mc.20429.

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi H, Fujita K, Fujisawa T, Yonemitsu K, Tomimoto A, Ikeda I, et al. Inhibition of peroxisome proliferator-activated receptor gamma activity in esophageal carcinoma cells results in a drastic decrease of invasive properties. Cancer Sci. 2006;97:854–60. https://doi.org/10.1111/j.1349-7006.2006.00250.x.

    Article  CAS  PubMed  Google Scholar 

  19. Schaefer KL, Takahashi H, Morales VM, Harris G, Barton S, Osawa E, et al. PPARgamma inhibitors reduce tubulin protein levels by a PPARgamma, PPARdelta and proteasome-independent mechanism, resulting in cell cycle arrest, apoptosis and reduced metastasis of colorectal carcinoma cells. Int J Cancer. 2007;120:702–13. https://doi.org/10.1002/ijc.22361.

    Article  CAS  PubMed  Google Scholar 

  20. Peng Y, Zhang Q, Zielinski RM, Howells RD, Welsh WJ. Identification of an irreversible PPARgamma antagonist with potent anticancer activity. Pharm Res Perspect. 2020;8:693–708. https://doi.org/10.1002/prp2.693.

    Article  CAS  Google Scholar 

  21. Schaefer KL, Wada K, Takahashi H, Matsuhashi N, Ohnishi S, Wolfe MM, et al. Peroxisome proliferator-activated receptor γ inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells. Cancer Res. 2005;65:2251–9.

    Article  CAS  Google Scholar 

  22. Masuda T, Wada K, Nakajima A, Okura M, Kudo C, Kadowaki T, et al. Critical role of peroxisome proliferator-activated receptor γ on anoikis and invasion of squamous cell carcinoma. Clin Cancer Res. 2005;11:4012–21.

    Article  CAS  Google Scholar 

  23. Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994;124:619–26.

    Article  CAS  Google Scholar 

  24. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol. 1997;9:701–6.

    Article  CAS  Google Scholar 

  25. Alanko J, Mai A, Jacquemet G, Schauer K, Kaukonen R, Saari M, et al. Integrin endosomal signalling suppresses anoikis. Nat Cell Biol. 2015;17:1412–21.

    Article  CAS  Google Scholar 

  26. Paola C, Elisa G. Anoikis: A necessary death program for anchorage-dependent cells. Biochem Pharm. 2008;76:1352–64.

    Article  Google Scholar 

  27. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013;1833:3481–98.

    Article  CAS  Google Scholar 

  28. Zhong X, Rescorla FJ. Cell surface adhesion molecules and adhesion-initiated signaling: Understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell Signal. 2012;24:393–401.

    Article  CAS  Google Scholar 

  29. Nagaprashantha L, Vartak N, Awasthi S, Awasthi S, Singhal SS. Novel anti-cancer compounds for developing combinatorial therapies to target anoikis-resistant tumors. Pharm Res. 2012;29:621–36.

    Article  CAS  Google Scholar 

  30. Pirat C, Farce A, Lebegue N, Renault N, Furman C, Millet R, et al. Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators. J Med Chem. 2012;55:4027–61. https://doi.org/10.1021/jm101360s.

    Article  CAS  PubMed  Google Scholar 

  31. Cariou B, Charbonnel B, Staels B. Thiazolidinediones and PPARgamma agonists: time for a reassessment. Trends Endocrin Met 2012;23:205–15. https://doi.org/10.1016/j.tem.2012.03.001.

    Article  CAS  Google Scholar 

  32. Zhou K, Liu J, Xiong X, Cheng M, Hu X, Narva S, et al. Design, synthesis of 4,5-diazafluorene derivatives and their anticancer activity via targeting telomeric DNA G-quadruplex. Eur J Med Chem. 2019;178:484–99. https://doi.org/10.1016/j.ejmech.2019.06.012.

    Article  CAS  PubMed  Google Scholar 

  33. Yousefnia S, Momenzadeh S, Seyed Forootan F, Ghaedi K, Nasr Esfahani MH. The influence of peroxisome proliferator-activated receptor gamma (PPARgamma) ligands on cancer cell tumorigenicity. Gene. 2018;649:14–22. https://doi.org/10.1016/j.gene.2018.01.018.

    Article  CAS  PubMed  Google Scholar 

  34. Grossmann J. Molecular mechanisms of “detachment-induced apoptosis—Anoikis”. Apoptosis 2002;7:247–60.

    Article  CAS  Google Scholar 

  35. Woods NT, Yamaguchi H, Lee FY, Bhalla KN, Wang H-G. Anoikis, initiated by Mcl-1 degradation and Bim induction, is deregulated during oncogenesis. Cancer Res. 2007;67:10744–52.

    Article  CAS  Google Scholar 

  36. Takahashi H, Fujita K, Fujisawa T, Yonemitsu K, Tomimoto A, Ikeda I, et al. Inhibition of peroxisome proliferator‐activated receptor gamma activity in esophageal carcinoma cells results in a drastic decrease of invasive properties. Cancer Sci. 2006;97:854–60.

    Article  CAS  Google Scholar 

  37. Masuda T, Wada K, Nakajima A, Okura M, Kudo C, Kadowaki T, et al. Critical role of peroxisome proliferator-activated receptor γ on anoikis and invasion of squamous cell carcinoma. Clin Cancer Res. 2005;11:4012–21.

    Article  CAS  Google Scholar 

  38. Schaefer KL, Wada K, Takahashi H, Matsuhashi N, Ohnishi S, Wolfe MM, et al. Peroxisome proliferator-activated receptor γ inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells. Cancer Res. 2005;65:2251–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (NSFC, grant numbers 21572207, 21877101), the Zhejiang Leading Innovation and Entrepreneurship Team (grant number 2018R01015), and the Zhejiang Provincial Key Discipline of Chemical Biology.

Author contributions

WZ, YW, QY, and AA conceived and designed the experiments. QY, AA, and YZ performed the experiments. QY, AA, Y.Z., MW, and XX acquired and analyzed the experimental data. QY, and AA wrote the manuscript. WZ, AA, YW, and QY revised the manuscript. All authors reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanling Wu or Wen Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Qiang Yin, Annoor Awadasseid

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Q., Awadasseid, A., Zhou, Y. et al. 4,5-diazafenylfluorene-rhodanine conjugates promote anoikis in A375 cells via inhibiting PPAR-γ expression. Med Chem Res 31, 1476–1487 (2022). https://doi.org/10.1007/s00044-022-02928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02928-5

Keywords