Skip to main content

Advertisement

Log in

Design, synthesis, anticancer evaluation and molecular docking studies of new imidazo [2, 1-b] thiazole -based chalcones

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A new series of imidazo[2, 1-b]thiazole-based chalcone derivatives were designed, synthesized, and tested for their anticancer activities. Firstly, the cytotoxic ability of the compounds was tested on three different types of cancer cells, namely colorectal adenocarcinoma (HT-29), lung carcinoma (A-549), breast adenocarcinoma (MCF-7), and mouse fibroblast cells (3T3-L1) by XTT tests. Afterwards, further anticancer activity studies with the compound 3j having the lowest IC50 and highest SI values were performed on MCF-7 cells. XTT results revealed that all the test compounds exhibited much higher cytotoxic activity on the cancer cells than that of normal 3T3-L1 cells. Among the compounds, 3j especially stood out with its IC50 (9.76 µM) and SI (14.99) values on MCF-7 cells. Flow cytometry analysis proved that 3j-treated MCF-7 cells was resulted in the mitochondrial membrane depolarization, multicaspase activation, and ultimately apoptosis. Additionally, in silico molecular docking approaches were carried out to confirm the experimental observations and investigate the efficacy of the compound 3j. The interactions of 3j on DNA dodecamer and caspase-3 were investigated by molecular docking studies. Based on these interactions, the active amino acids in the binding site were determined and their free binding energies (ΔGBind) were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. Cancer J Clin. 2021;7:17. https://doi.org/10.3322/caac.21654.

    Article  Google Scholar 

  2. Kobylinska L, Mitina N, Zaichenko A, Stoika R. Controlled delivery and reduced side effects of anticancer drugs complexed with polymeric nanocarrier. J. Biomed. Nanotechnol. 2022:119–47. https://doi.org/10.1007/978-3-030-76235-3_5.

  3. Levi M, Sivapalaratnam S, Levi M, Sivapalaratnam S. An overview of thrombotic complications of old and new anticancer drugs. Thrombosis Res. 2020;191:S17–S21. https://doi.org/10.1016/S0049-3848(20)30391-1.

    Article  CAS  Google Scholar 

  4. Ali I, Nadeem Lone M, Al-Othman ZA, Al-Warthan M, Marsin Sanagi M. Heterocyclic scaffolds: centrality in anticancer drug development. Curr Drug Targets. 2015;16:711–34.

    Article  CAS  Google Scholar 

  5. Thari FZ, Tachallait H, El Alaoui N, Talha A, Arshad S, Álvarez E, et al. Ultrasound-assisted one-pot green synthesis of new N- substituted-5-arylidene-thiazolidine-2,4-dione-isoxazoline derivatives using NaCl/Oxone/Na3PO4 in aqueous media. Ultrason Sonochem. 2020;68:105222. https://doi.org/10.1016/j.ultsonch.2020.105222.

    Article  CAS  PubMed  Google Scholar 

  6. Talha A, Mourhly A, Tachallait H, Driowya M, El Hamidi A, Arshad S, et al. One-pot four-component tandem synthesis of novel sulfonamide-1, 2, 3-triazoles catalyzed by reusable copper (II)-adsorbed on mesoporous silica under ultrasound irradiation. Tetrahedron. 2021;90:132215. https://doi.org/10.1016/j.tet.2021.132215.

    Article  CAS  Google Scholar 

  7. Kamal A, Dastagiri D, Ramaiah MJ, Reddy JS, Bharathi EV, Srinivas C, et al. Synthesis of imidazothiazole–chalcone derivatives as anticancer and apoptosis inducing agents. ChemMedChem. 2012;5:1937–1647. https://doi.org/10.1002/cmdc.201000346.

    Article  CAS  Google Scholar 

  8. Abdel-Maksoud MS, Ammar UM, Oh CH. Anticancer profile of newly synthesized BRAF inhibitors possess 5-(pyrimidin-4-yl) imidazo [2, 1-b] thiazole scaffold. Bioorg Med Chem. 2019;27:2041–51. https://doi.org/10.1016/j.bmc.2019.03.062.

    Article  CAS  PubMed  Google Scholar 

  9. Shetty NS, Khazi IAM, Ahn C. Synthesis, anthelmintic and anti-inflammatory activities of some novel imidazothiazole sulfides and sulfones. Bull Korean Chem Soc. 2010;31:2337–40. https://doi.org/10.5012/bkcs.2010.31.8.2337.

    Article  CAS  Google Scholar 

  10. Moraski GC, Deboosère N, Marshall KL, Weaver HA, Vandeputte A, Hastings C, et al. Intracellular and in vivo evaluation of imidazo[2,1-b]thiazole-5-carboxamide anti-tuberculosis compounds. PloS ONE. 2020;15:e0227224. https://doi.org/10.1371/journal.pone.0227224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gürsoy E, Dincel ED, Naesens L, Güzeldemirci NU. Design and synthesis of novel Imidazo [2, 1-b] thiazole derivatives as potent antiviral and antimycobacterial agents. Bioorg Chem. 2020;95:103496. https://doi.org/10.1016/j.bioorg.2019.103496.

    Article  CAS  PubMed  Google Scholar 

  12. Dincel ED, Gürsoy E, Yilmaz-Ozden T, Ulusoy-Güzeldemirci N. Antioxidant activity of novel imidazo[2,1-b]thiazole derivatives: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. Bioorg Chem. 2020;103:104220. https://doi.org/10.1016/j.bioorg.2020.104220.

    Article  CAS  PubMed  Google Scholar 

  13. Koudad M, El Hamouti C, Elaatiaoui A, Dadou S, Oussaid A, Abrigach F, et al. Synthesis, crystal structure, antimicrobial activity and docking studies of new imidazothiazole derivatives. J Iran Chem Soc. 2020;17:297–306. https://doi.org/10.1007/s13738-019-01766-4.

    Article  CAS  Google Scholar 

  14. Sultana F, Bonam SR, Reddy VG, Nayak VL, Akunuri R, Routhu SR, et al. Synthesis of benzo [d] imidazo [2, 1-b] thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents. Bioorg Chem. 2018;76:1–12. https://doi.org/10.1016/j.bioorg.2017.10.019.

    Article  CAS  PubMed  Google Scholar 

  15. Shareef MA, Devi GP, Routhu SR, Kumar G, Kamal A, Babu BN. New imidazo [2, 1-b] thiazole-based aryl hydrazones: unravelling their synthesis and antiproliferative and apoptosis-inducing potential. RSC Med Chem. 2020;11:1178–84. https://doi.org/10.1039/D0MD00188K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem. 2014;85:758–77. https://doi.org/10.1016/j.ejmech.2014.08.033.

    Article  CAS  PubMed  Google Scholar 

  17. Katsori AM, Hadjipavlou-Litina D. Recent progress in therapeutic applications of chalcones. Expert Opin Ther Pat. 2011;21:1575–96. https://doi.org/10.1517/13543776.2011.596529.

    Article  CAS  PubMed  Google Scholar 

  18. Rani A, Anand A, Kumar K, Kumar V. Recent developments in biological aspects of chalcones: the odyssey continues. Expert Opin Drug Disco. 2019;14:249–88. https://doi.org/10.1080/17460441.2019.1573812.

    Article  CAS  Google Scholar 

  19. Rocha S, Ribeiro D, Fernandes E, Freitas M. A systematic review on anti-diabetic properties of chalcones. Curr Med Chem. 2020;27:2257–321. https://doi.org/10.2174/0929867325666181001112226.

    Article  CAS  PubMed  Google Scholar 

  20. Salehi B, Quispe C, Chamkhi I, El Omari N, Balahbib A, Sharifi-Rad J, et al. Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence. Front Pharmacol 2020;11:592654. https://doi.org/10.3389/fphar.2020.592654.

    Article  CAS  PubMed  Google Scholar 

  21. Tabata K, Motani K, Takayanagi N, Nishimura R, Asami S, Kimura Y, et al. Xanthoangelol, a major chalcone constituent of Angelica keiskei, induces apoptosis in neuroblastoma and leukemia cells. Biol Pharm Bull. 2005;28:1404–7. https://doi.org/10.1248/bpb.28.1404.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, Chen W, Li X. A novel anticancer effect of butein: inhibition of invasion through the ERK1/2 and NF-κB signaling pathways in bladder cancer cells. FEBS Lett. 2008;582:1821–8. https://doi.org/10.1016/j.febslet.2008.04.046.

    Article  CAS  PubMed  Google Scholar 

  23. Akihisa T, Kikuchi T, Nagai H, Ishii K, Tabata K, Suzuki T. 4-Hydroxyderricin from Angelica keiskei roots induces caspase-dependent apoptotic cell death in HL60 human leukemia cells. J Oleo Sci. 2011;60:71–77. https://doi.org/10.5650/jos.60.71.

    Article  CAS  PubMed  Google Scholar 

  24. Zi X, Simoneau AR. Simoneau, Flavokawain A, a Novel Chalcone from Kava Extract, Induces apoptosis in bladder cancer cells by involvement of Bax Protein-Dependent and Mitochondria-Dependent apoptotic pathway and suppresses tumor growth in mice. Cancer Res. 2005;65:3479. https://doi.org/10.1158/0008-5472.CAN-04-3803.

    Article  CAS  PubMed  Google Scholar 

  25. Tabeshpour J, Sahebkar A, Zirak MR, Zeinali M, Hashemzaei M, Rakhshani S, et al. Computer-aided drug design and drug pharmacokinetic prediction: a mini-review. Curr Pharm Des. 2018;24:3014–9. https://doi.org/10.2174/1381612824666180903123423.

    Article  CAS  PubMed  Google Scholar 

  26. Altay A, Caglar S, Caglar B. Silver (I) complexes containing diclofenac and niflumic acid induce apoptosis in human-derived cancer cell lines. Arch Physiol Biochem. 2019;0:1–11. https://doi.org/10.1080/13813455.2019.1662454.

    Article  CAS  Google Scholar 

  27. Caglar S, Altay A. In vitro anticancer activity of novel Co (II) and Ni (II) complexes of non-steroidal anti-inflammatory drug niflumic acid against human breast adenocarcinoma MCF-7 cells. Cell Biochem Biophys. 2021;79:729–46. https://doi.org/10.1007/s12013-021-00984-z.

    Article  CAS  PubMed  Google Scholar 

  28. Shi Y. Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 2002;9:459–70. https://doi.org/10.1016/S1097-2765(02)00482-3.

    Article  CAS  PubMed  Google Scholar 

  29. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006;13:1423–33. https://doi.org/10.1038/sj.cdd.4401950.

    Article  CAS  PubMed  Google Scholar 

  30. Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K, et al. Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci. 1981;78:2179–83. https://doi.org/10.1073/pnas.78.4.2179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feeney B, Pop C, Swartz P, Mattos C, Clark AC. Role of loop bundle hydrogen bonds in the maturation and activity of (Pro)caspase-3. Biochem-Us. 2006;45:13249–63. https://doi.org/10.1021/bi0611964.

    Article  CAS  Google Scholar 

  32. Moradi SZ, Nowroozi A, Sadrjavadi K, Moradi S, Mansouri K, Hosseinzadeh L, et al. Direct evidences for the groove binding of the Clomifene to double stranded DNA. Int J Biol Macromol. 2018;114:40–53. https://doi.org/10.1016/j.ijbiomac.2018.03.040.

    Article  CAS  PubMed  Google Scholar 

  33. Arif A, Ahmad A, Ahmad M. Toxicity assessment of carmine and its interaction with calf thymus DNA. J Biomol Struct Dyn. 2021;39:5861. https://doi.org/10.1080/07391102.2020.1794962.

    Article  CAS  PubMed  Google Scholar 

  34. Laskowski RA, Swindells MB. LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J Chem Inf Model. 2011;51:2778–86. https://doi.org/10.1021/ci200227u.

    Article  CAS  PubMed  Google Scholar 

  35. Li JN, Abel R, Zhu K, Cao YX, Zhao SW, Friesner RA. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins. 2011;79:2794–812. https://doi.org/10.1002/prot.23106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Anil DA, Aydin BO, Demir Y, Turkmenoglu B. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1, 2, 3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J Mol Struct. 2022;1257:132613. https://doi.org/10.1016/j.molstruc.2022.132613.

    Article  CAS  Google Scholar 

  37. Schrödinger S. Release 2021-2: LigPrep, LLC, New York, NY; 2021.

  38. Schrödinger S. Release 2021-2: Prime, LLC, New York, NY; 2021.

  39. Schrödinger S. Release 2021-2: Glide, LLC, New York, NY; 2021.

  40. Schrödinger S. Release 2021-2: Protein Preparation Wizard; Epik, LLC, New York, NY, 2021; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY; 2021.

Download references

Acknowledgements

We would like to thank Erzincan Binali Yıldırım University, Basic Sciences Application and Research Center (EBYU-EUTAM) for the Schrödinger Maestro 2021-2 program.

Funding

This study is supported by Mohammed I University of Oujda.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmet Altay or Khalid Karrouchi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadou, S., Altay, A., Koudad, M. et al. Design, synthesis, anticancer evaluation and molecular docking studies of new imidazo [2, 1-b] thiazole -based chalcones. Med Chem Res 31, 1369–1383 (2022). https://doi.org/10.1007/s00044-022-02916-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02916-9

Keywords

Navigation