Skip to main content
Log in

Review of 3D templates for in silico homology models of MATs: improved 3D model of hDAT

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In the past 20 years there have been great leaps in the understanding of the structure and mechanism of monoamine transporters (MATs) owing to X-ray crystallography and cryo-EM. From the first breakthrough with the crystallization of the ortholog bacterial leucine transporter (LeuT) to more recent structures of the higher-identity drosophila dopamine transporter (dDAT) and human serotonin transporter (hSERT), the construction of better 3D computational models of hDAT has been pursued and is essential for the development of new medications for neuropsychiatric disorders associated with dopamine dysregulation. Previous and recent homology models of the yet to be crystallized hDAT have relied only on one template for generation. Here, we tabulated currently available crystal structures of MATs and then employed a multi template approach to generate a hDAT 3D homology model where contribution of individual templates account for missing structural features of single template models (i.e., EL2 in dDAT).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aggarwal S, Mortensen OV. Overview of monoamine transporters. Curr Protoc Pharmacol. 2017;79:12.16.1–7. https://doi.org/10.1002/cpph.32.

    Article  Google Scholar 

  2. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E. Crystal structure of LEUTAA, a bacterial homolog of Na+/Cl–dependent neurotransmitter transporters. Nature. 2005;437:215–23. https://doi.org/10.1038/nature03978.

    Article  CAS  PubMed  Google Scholar 

  3. Gouaux E, Penmatsa A, Wang K. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature. 2013;503:85–90. https://doi.org/10.2210/pdb4m48/pdb.

  4. Wang KH, Penmatsa A, Gouaux E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature. 2015;521:322–7. https://doi.org/10.1038/nature14431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Penmatsa A, Wang KH, Gouaux E. X-ray structures of Drosophila dopamine transporter in complex with nisoxetine and reboxetine. Nat Struct Mol Biol. 2015;22:506–8. https://doi.org/10.1038/nsmb.3029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532:334–9. https://doi.org/10.1038/nature17629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coleman JA, Yang D, Zhao Z, Wen P-C, Yoshioka C, Tajkhorshid E, et al. Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature. 2019;569:141–5. https://doi.org/10.1038/s41586-019-1135-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coleman JA, Navratna V, Antermite D, Yang D, Bull JA, Gouaux E. Chemical and structural investigation of the paroxetine-human serotonin transporter complex. Elife. 2020;9:e56427. https://doi.org/10.1101/2020.02.26.966895.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Coleman JA, Gouaux E. Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat Struc Mol Biol. 2018;25:170–5. https://doi.org/10.1038/s41594-018-0026-8.

    Article  CAS  Google Scholar 

  10. Huang X, Zhan C-G. How dopamine transporter interacts with dopamine: Insights from molecular modeling and simulation. Biophys J. 2007;93:3627–39. https://doi.org/10.1529/biophysj.107.110924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yuan Y, Huang X, Midde NM, Quizon PM, Sun W-L, Zhu J, et al. Molecular mechanism of HIV-1 Tat interacting with human dopamine transporter. ACS Chem Neurosci. 2015;6:658–65. https://doi.org/10.1021/acschemneuro.5b00001.

    Article  CAS  PubMed  Google Scholar 

  12. Haddad Y, Heger Z, Adam V. Guidelines for homology modeling of dopamine, norepinephrine, and serotonin transporters. ACS Chem Neurosci. 2016;7:1607–13. https://doi.org/10.1021/acschemneuro.6b00242.

    Article  CAS  PubMed  Google Scholar 

  13. Ortore G, Orlandini E, Betti L, Giannaccini G, Mazzoni MR, Camodeca C, Nencetti S. Focus on human monoamine transporter selectivity. New human DAT and NET models, experimental validation, and SERT affinity exploration. ACS Chem Neurosci. 2020;11:3214–32. https://doi.org/10.1021/acschemneuro.0c00304.

    Article  CAS  PubMed  Google Scholar 

  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/s0022-2836(05)80360-2.

    Article  CAS  PubMed  Google Scholar 

  15. Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815. https://doi.org/10.1006/jmbi.1993.1626.

    Article  PubMed  Google Scholar 

  16. Melo F, Sali A. Fold assessment for comparative protein structure modeling. Protein Sci. 2007;16:2412–26. https://doi.org/10.1110/ps.072895107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem. 2008;29:1859–65. https://doi.org/10.1002/jcc.20945.

    Article  CAS  PubMed  Google Scholar 

  18. Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997;267:727–48. https://doi.org/10.1006/jmbi.1996.0897.

    Article  CAS  PubMed  Google Scholar 

  19. Reva BA, Finkelstein AV, Skolnick J. What is the probability of a chance prediction of a protein structure with an RMSD of 6 Å? Fold Des. 1998;3:141–7. https://doi.org/10.1016/s1359-0278(98)00019-4.

    Article  CAS  PubMed  Google Scholar 

  20. Kitayama S, Shimada S, Xu H, Markham L, Donovan DM, Uhl GR. Dopamine transporter site-directed mutations differentially alter substrate transport and cocaine binding. Proc Natl Acad Sci USA. 1992;89:7782–5. https://doi.org/10.1073/pnas.89.16.7782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Dukat.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, C.B., Dukat, M. Review of 3D templates for in silico homology models of MATs: improved 3D model of hDAT. Med Chem Res 31, 643–651 (2022). https://doi.org/10.1007/s00044-022-02863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02863-5

Keywords

Navigation