Skip to main content

Advertisement

Log in

Tetrahydroquinoline/4,5-dihydroisoxazole hybrids with a remarkable effect over mitochondrial bioenergetic metabolism on melanoma cell line B16F10

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Metastatic melanoma, unlike early-stage melanomas, requires significant interventions with a poor prognosis. In consequence, we evaluated the effect of three tetrahydroquinoline/4,5-dihydroisoxazole hybrids (CB35, CB46, and CB50) on cellular respiration in murine melanoma cells (B16F10). Additionally, the impact of these compounds against the main antioxidant enzymes and the electron transport on the mitochondrial respiratory chain also was determined. The effect on cellular respiration indicates that compound CB35 (10 µM) inhibits the electron transport through the mitochondrial respiratory chain after 24 h of treatment. This inhibition could be related to the transport of electrons to cytochrome c due to the decreasing activity in the NADH cytochrome c reductase at 1 µM in disrupted mitochondria. On the other hand, compounds CB46 and CB50 generate an uncoupling effect on oxidative phosphorylation by increasing oxygen consumption in the LEAK state (10 µM, 24 h), as well as the increase in state 4 in the mitochondrial bioenergetics. In all cases, molecular hybrids increase ATPase activity in coupled mitochondria, suggesting an uncoupled effect. All hybrids disrupt the redox system in B16F10, and the glycolytic pathway by inhibiting hexokinase and pyruvate kinase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Saleh J. Murine models of melanoma. Pathol Res Pr. 2018;214:1235–8. https://doi.org/10.1016/j.prp.2018.07.008

    Article  CAS  Google Scholar 

  3. Tracey EH, Vij A. Updates in melanoma. Dermatol Clin. 2019;37:73–82. https://doi.org/10.1016/j.det.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  4. Kwong A, Sanlorenzo M, Rappersberger K, Vujic I. Update on advanced melanoma treatments: small molecule targeted therapy, immunotherapy, and future combination therapies. Wien Medizinische Wochenschr. 2019;169:314–22. https://doi.org/10.1007/s10354-016-0535-1

    Article  Google Scholar 

  5. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl J Med. 2012;366:707–14. https://doi.org/10.1056/NEJMoa1112302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karimkhani C, Gonzalez R, Dellavalle RP. A review of novel therapies for melanoma. Am J Clin Dermatol. 2014;15:323–37. https://doi.org/10.1007/s40257-014-0083-7

    Article  PubMed  Google Scholar 

  7. Grazia G, Penna I, Perotti V, Anichini A, Tassi E. Towards combinatorial targeted therapy in melanoma: from pre-clinical evidence to clinical application (Review). Int J Oncol. 2014;45:929–49. https://doi.org/10.3892/ijo.2014.2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703. https://doi.org/10.1056/NEJMoa1210093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mekhail T, Wood L, Bukowski R. Interleukin-2 in cancer therapy uses and optimum management of adverse effects. BioDrugs. 2000;14:299–318. https://doi.org/10.2165/00063030-200014050-00003

    Article  CAS  PubMed  Google Scholar 

  10. McArthur GA, Chapman PB, Robert C, Larkin J, Haanen JB. Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet oncol. 2014;15:323–32. https://doi.org/10.1016/S1470-2045(14)70012-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klippstein R, Bansal SS, Al-jamal KT. Doxorubicin enhances curcumin’s cytotoxicity in human prostate cancer cells in vitro by enhancing its cellular uptake. Int J Pharm. 2016;514:169–75. https://doi.org/10.1016/j.ijpharm.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  12. Opattov A, Cumov A, Slíva D, Vodi P, Rejhov A. Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem. 2018;144:582–94. https://doi.org/10.1016/j.ejmech.2017.12.039

    Article  CAS  Google Scholar 

  13. Faidallah HM, Saqer AA, Alamry KA, Khan KA, Zayed MAM, Khan SA. Design, synthesis and biological evaluation of some novel hexahydroquinoline-3-carbonitriles as anticancer and antimicrobial agents. Asian J Chem. 2014;26:8139–44. https://doi.org/10.14233/ajchem.2014.17616

    Article  CAS  Google Scholar 

  14. Rodríguez YA, Gutiérrez M, Ramírez D, Alzate-Morales J, Bernal CC, Güiza FM, et al. Novel N-allyl/propargyl tetrahydroquinolines: Synthesis via Three-component Cationic Imino Diels-Alder Reaction, Binding Prediction, and Evaluation as Cholinesterase Inhibitors. Chem Biol Drug Des. 2016;88:498–510. https://doi.org/10.1111/cbdd.12773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chaitanya MVSK, Reddy POV, Nikhil K, Kumar A, Shah K, Kumar D. Synthesis and anticancer activity studies of indolylisoxazoline analogues. Bioorg Med Chem Lett 2018;28:2842–5. https://doi.org/10.1016/j.bmcl.2018.07.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang XF, Wang SB, Ohkoshi E, Wang LT, Hamel E, Qian K, et al. N-aryl-6-methoxy-1,2,3,4-tetrahydroquinolines: a novel class of antitumor agents targeting the colchicine site on tubulin. Eur J Med Chem. 2013;67:196–207. https://doi.org/10.1016/j.ejmech.2013.06.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagata N, Kawai K, Nakanishi I. Subtle structural changes in tetrahydroquinolines, a new class of nonsteroidal selective androgen receptor modulators, induce different functions. J Chem Inf Model. 2012;52:2257–64. https://doi.org/10.1021/ci300219g

    Article  CAS  PubMed  Google Scholar 

  18. Muñoz A, Sojo F, Arenas DRM, Kouznetsov VV, Arvelo F. Cytotoxic effects of new trans-2,4-diaryl-r-3-methyl-1,2,3,4- tetrahydroquinolines and their interaction with antitumoral drugs gemcitabine and paclitaxel on cellular lines of human breast cancer. Chem Biol Interact. 2011;189:215–21. https://doi.org/10.1016/j.cbi.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  19. Kumar A, Srivastava S, Gupta G, Chaturvedi V, Sinha S, Srivastava R. Natural product inspired diversity oriented synthesis of tetrahydroquinoline scaffolds as antitubercular agent. ACS Comb Sci. 2011;13:65–71. https://doi.org/10.1021/co100022h

    Article  CAS  PubMed  Google Scholar 

  20. Das P, Omollo AO, Sitole LJ, McClendon E, Valente EJ, Raucher D, et al. Synthesis and investigation of novel spiro-isoxazolines as anti-cancer agents. Tetrahedron Lett. 2015;56:1794–7. https://doi.org/10.1016/j.tetlet.2015.02.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khazir J, Singh PP, Reddy DM, Hyder I, Shafi S, Sawant SD, et al. Synthesis and anticancer activity of novel spiro-isoxazoline and spiro-isoxazolidine derivatives of α-santonin. Eur J Med Chem. 2013;63:279–89. https://doi.org/10.1016/j.ejmech.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  22. Kaur K, Kumar V, Sharma AK, Gupta GK. Isoxazoline containing natural products as anticancer agents: a review. Eur J Med Chem. 2014;77:121–33. https://doi.org/10.1016/j.ejmech.2014.02.063

    Article  CAS  PubMed  Google Scholar 

  23. Álvarez santos MR, Bueno Duarte Y, Güiza MF, Romero Bohórquez AR, Mendez-Sanchez SC. Effects of new tetrahydroquinoline-isoxazole hybrids on bioenergetics of hepatocarcinoma Hep-G2 cells and rat liver mitochondria. Chem Biol Interact. 2019;302:164–71. https://doi.org/10.1016/j.cbi.2019.02.002

    Article  CAS  PubMed  Google Scholar 

  24. Bernal CC, Vesga LC, Mendez-Sánchez SC, Romero Bohórquez AR. Synthesis and anticancer activity of new tetrahydroquinoline hybrid derivatives tethered to isoxazoline moiety. Med Chem Res. 2020;29:675–89. https://doi.org/10.1007/s00044-020-02513-8

    Article  CAS  Google Scholar 

  25. Vesga LC, Kronenberger T, Tonduru AK, Kita DH, Zattoni IF, Bernal CC, et al. Tetrahydroquinoline/4,5‐Dihydroisoxazole Molecular Hybrids as Inhibitors of Breast Cancer Resistance Protein (BCRP/ABCG2). ChemMedChem. 2021: [Early view] https://doi.org/10.1002/cmdc.202100188

  26. Galluzzi L, Kepp O, Kroemer G. Mitochondrial regulation of cell death: a phylogenetically conserved control. Micro Cell. 2016;3:101–8. https://doi.org/10.15698/mic2016.03.483.

    Article  Google Scholar 

  27. Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64. https://doi.org/10.1016/j.semcdb.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  28. Lidia Ś, Wiktorska K, Suchocki P. The comparison of MTT and CVS assays for the assessment of anticancer agent interactions. PLoS One. 2016;11:e0155772 https://doi.org/10.1371/journal.pone.0155772

    Article  CAS  Google Scholar 

  29. Fortin S, Bérubé G. Advances in the development of hybrid anticancer drugs. Expert Opin Drug Disco. 2013;8:1029–47. https://doi.org/10.1517/17460441.2013.798296

    Article  CAS  Google Scholar 

  30. Kerru N, Singh P, Koorbanally N, Raj R, Kumar V. Recent advances (2015–2016) in anticancer hybrids. Eur J Med Chem. 2017;142:179–212. https://doi.org/10.1016/j.ejmech.2017.07.033

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen DM, Hussain M. The role of the mitochondria in mediating cytotoxicity of anti-cancer therapies. J Bioenerg Biomembr. 2007;39:13–21. https://doi.org/10.1007/s10863-006-9055-9

    Article  CAS  PubMed  Google Scholar 

  32. Pardo-Andreu GL, Nuñez Y, Tudella VG, Cuesta-Rubio O, Rodrigues FP, Pestana CR, et al. The anti-cancer agent nemorosone is a new potent protonophoric mitochondrial uncoupler. Mitochondrion. 2011;11:255–63. https://doi.org/10.1016/j.mito.2010.10.008

    Article  CAS  PubMed  Google Scholar 

  33. Armstrong JS. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharm. 2007;151:1154–65. https://doi.org/10.1038/sj.bjp.0707288

    Article  CAS  Google Scholar 

  34. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fulda S, Debatin KM. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006;25:4798–811. https://doi.org/10.1038/sj.onc.1209608

    Article  CAS  PubMed  Google Scholar 

  36. Hütter E, Unterluggauer H, Garedew A, Jansen-Dürr P, Gnaiger E. High-resolution respirometry-a modern tool in aging research. Exp Gerontol. 2006;41:103–9. https://doi.org/10.1016/j.exger.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  37. Cierlitza M, Chauvistré H, Bogeski I, Zhang X, Hauschild A, Herlyn M, et al. Mitochondrial oxidative stress as a novel therapeutic target to overcome intrinsic drug resistance in melanoma cell subpopulations. Exp Dermatol. 2015;24:155–7. https://doi.org/10.1111/exd.12613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Roesch A, Vultur A, Bogeski I, Wang H, Zimmermann KM, Speicher D, et al. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell. 2013;23:811–25. https://doi.org/10.1016/j.ccr.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  39. Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, et al. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 2005;65:613–21

    CAS  PubMed  Google Scholar 

  40. Kumar R, Malik Y, Kuldeep D, Mukesh B. Apoptosis and other alternate mechanisms of cell death. Asian J Anim Vet Adv. 2015;10:646–68. https://doi.org/10.3923/ajava.2015.646.668

    Article  CAS  Google Scholar 

  41. Figarola JL, Singhal J, Singhal S, Kusari J, Riggs A. Bioenergetic modulation with the mitochondria uncouplers SR4 and niclosamide prevents proliferation and growth of treatment-naïve and vemurafenib-resistant melanomas. Oncotarget. 2018;9:36945–65. https://doi.org/10.18632/oncotarget.26421

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cantwell-Dorris ER, O’Leary JJ, Sheils OM. BRAFV600E: Implications for carcinogenesis and molecular therapy. Mol Cancer Ther. 2011;10:385–94. https://doi.org/10.1158/1535-7163.MCT-10-0799

    Article  CAS  PubMed  Google Scholar 

  43. Salama AKS, Flaherty KT. BRAF in melanoma: Current strategies and future directions. Clin Cancer Res. 2013;19:4326–34. https://doi.org/10.1158/1078-0432.CCR-13-0779

    Article  CAS  PubMed  Google Scholar 

  44. Lakhter AJ, Hamilton J, Dagher PC, Mukkamala S, Hato T, Dong XC, et al. Ferroxitosis: a cell death from modulation of oxidative phosphorylation and PKM2-dependent glycolysis in melanoma. Oncotarget. 2014;5:12694–703. https://doi.org/10.18632/oncotarget.3031

    Article  PubMed  PubMed Central  Google Scholar 

  45. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010;48:749–62. https://doi.org/10.1016/j.freeradbiomed.2009.12.022. Elsevier Inc

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zelko IN, Mariani TJ, Folz RJ. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution and expression. Free Radic Biol Med. 2002;33:337–49. https://doi.org/10.1016/s0891-5849(02)00905-x

    Article  CAS  PubMed  Google Scholar 

  47. Kang MY, Kim HB, Piao C, Lee KH, Hyun JW, Chang IY, et al. The critical role of catalase in prooxidant and antioxidant function of p53. Cell Death Differ. 2013;20:117–29. https://doi.org/10.1038/cdd.2012.102

    Article  CAS  PubMed  Google Scholar 

  48. Borrello S, De Leo ME, Galeotti T. Defective gene expression of MnSOD in cancer cells. Mol Asp Med. 1993;14:253–8. https://doi.org/10.1016/0098-2997(93)90012-3

    Article  CAS  Google Scholar 

  49. Griffiths EJ. Mitochondrial calcium transport in the heart: physiological and pathological roles. J Mol Cell Cardiol. 2009;46:789–803. https://doi.org/10.1016/j.yjmcc.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  50. Fruehauf JP, Zonis S, Al-Bassam M, Kyshtoobayeva A, Dasgupta C, Milovanovic T, et al. Melanin content and downregulation of glutathione S-transferase contribute to the action of L-buthionine-S-sulfoximine on human melanoma. Chem Biol Interact. 1998;111-112:277–305. https://doi.org/10.1016/s0009-2797(97)00167-1

    Article  CAS  PubMed  Google Scholar 

  51. Sander CS, Hamm F, Elsner P, Thiele JJ. Oxidative stress in malignant melanoma and non-melanoma skin cancer. Br J Dermatol. 2003;148:913–22. https://doi.org/10.1046/j.1365-2133.2003.05303.x

    Article  CAS  PubMed  Google Scholar 

  52. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 2015;527:186–91. https://doi.org/10.1038/nature15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Santos Bernardes S, de Souza-Neto FP, Pasqual Melo G, Guarnier FA, Marinello PC, Cecchini R, et al. Correlation of TGF-β1 and oxidative stress in the blood of patients with melanoma: a clue to understanding melanoma progression? Tumour Biol. 2016;37:10753–61. https://doi.org/10.1007/s13277-016-4967-4

    Article  CAS  PubMed  Google Scholar 

  54. Nogués MR, Giralt M, Cervelló I, Del Castillo D, Espeso O, Argany N, et al. Parameters related to oxygen free radicals in human skin: A study comparing healthy epidermis and skin cancer tissue. J Invest Dermatol. 2002;119:645–52. https://doi.org/10.1046/j.1523-1747.2002.00077.x

    Article  PubMed  Google Scholar 

  55. Venza M, Visalli M, Beninati C, De Gaetano GV, Teti D, Venza I. Cellular mechanisms of oxidative stress and action in melanoma. Oxid Med Cell Longev. 2015;2015:481782 https://doi.org/10.1155/2015/481782.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Giommarelli C, Corti A, Supino R, Favini E, Paolicchi A, Pompella A, et al. Cellular response to oxidative stress and ascorbic acid in melanoma cells overexpressing γ-glutamyltransferase. Eur J Cancer. 2008;44:750–9. https://doi.org/10.1016/j.ejca.2008.02.010

    Article  CAS  PubMed  Google Scholar 

  57. Denat L, Kadekaro AL, Marrot L, Leachman SA, Abdel-Malek ZA. Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol. 2014;134:1512–8. https://doi.org/10.1038/jid.2014.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pervaiz S, Clement MV. Superoxide anion: Oncogenic reactive oxygen species? Int J Biochem Cell Biol. 2007;39:1297–304. https://doi.org/10.1016/j.biocel.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  59. Cannavò SP, Tonacci A, Bertino L, Casciaro M, Borgia F, Gangemi S. The role of oxidative stress in the biology of melanoma: a systematic review. Pathol Res Pr. 2019;215:21–28. https://doi.org/10.1016/j.prp.2018.11.020

    Article  CAS  Google Scholar 

  60. Treiber N, Maity P, Singh K, Ferchiu F, Wlaschek M, Scharffetter-Kochanek K. The role of manganese superoxide dismutase in skin aging. Dermatoendocrinol. 2012;4:232–5. https://doi.org/10.4161/derm.21819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim A. Modulation of MnSOD in cancer: epidemiological and experimental evidences. Toxicol Res. 2013;26:83–93. https://doi.org/10.5487/TR.2010.26.2.083

    Article  Google Scholar 

  62. Suresh A, Guedez L, Moreb J, Zucali J. Overexpression of manganese superoxide dismutase promotes survival in cell lines after doxorubicin treatment. Br J Haematol. 2003;120:457–63. https://doi.org/10.1046/j.1365-2141.2003.04074.x

    Article  CAS  PubMed  Google Scholar 

  63. Fadaka A, Ajiboye B, Ojo O, Adewale O, Olayide I, Emuowhochere R. Biology of glucose metabolization in cancer cells. J Oncol Sci. 2017;3:45–51. https://doi.org/10.1016/j.jons.2017.06.002

    Article  Google Scholar 

  64. Lakhter AJ, Hato T, Shankar Babu M, Naidu SR, Paul S, Mahanta S. Lapachol inhibits glycolysis in cancer cells by targeting pyruvate kinase M2. PLoS One. 2018;13:e0191419 https://doi.org/10.1371/journal.pone.0191419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Filipp FV, Ratnikov B, De Ingeniis J, Smith JW, Osterman AL, Scott DA. Glutamine-fueled mitochondrial metabolism is decoupled from glycolysis in melanoma. Pigment Cell Melanoma Res. 2012;25:732–9. https://doi.org/10.1111/pcmr.12000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Akins NS, Nielson TC, Le HV. Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer. Curr Top Med Chem. 2018;18:494–504. https://doi.org/10.2174/1568026618666180523111351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Chandel N, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletios is therapeutic in mouse models of cancer. Cancer Cell. 2013;24:213–28. https://doi.org/10.1016/j.ccr.2013.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Patra K, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39:347–54. https://doi.org/10.1016/j.tibs.2014.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Raymond E, Chaney SG, Taamma A, Cvitkovic E. Oxaliplatin: a review of preclinical and clinical studies. Ann Oncol. 1998;9:1053–71. https://doi.org/10.1023/a:1008213732429

    Article  CAS  PubMed  Google Scholar 

  70. Ashton TM, Gillies McKenna W, Kunz-Schughart LA, Higgins GS. Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res. 2018;24:2482–90. https://doi.org/10.1158/1078-0432.CCR-17-3070

    Article  CAS  PubMed  Google Scholar 

  71. Barbi de Moura M, Vincent G, Fayewicz SL, Bateman NW, Hood BL, Sun M, et al. Mitochondrial respiration–an important therapeutic target in melanoma. PLoS One. 2012;7:e40690 https://doi.org/10.1371/journal.pone.0040690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McQuade JL, Vashisht Gopal Y. Counteracting oxidative phosphorylation-mediated resistance of melanomas to MAPK pathway inhibition. Mol Cell Oncol. 2015;2:e991610 https://doi.org/10.4161/23723556.2014.991610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  74. Kueng W, Silber E, Eppenberger U. Quantification of cells cultured on 96-well plates. Anal Biochem. 1989;182:16–9. https://doi.org/10.1016/0003-2697(89)90710-0

    Article  CAS  PubMed  Google Scholar 

  75. Appaix F, Minatchy M, Riva-Lavieille C, Olivares J, Antonsson B, Saks VA. Rapid spectrophotometric method for quantitation of cytochrome c release from isolated mitochondria or permeabilized cells revisited. Biochim Biophys Acta. 2000;1457:175–81. https://doi.org/10.1016/s0005-2728(00)00098-0

    Article  CAS  PubMed  Google Scholar 

  76. Gnaiger E. Capacity of oxidative phosphorylation in human skeletal muscle. Int J Biochem Cell Biol. 2009;41:1837–45. https://doi.org/10.1016/j.biocel.2009.03.013

    Article  CAS  PubMed  Google Scholar 

  77. Renner K, Amberger A, Konwalinka G, Kofler R, Gnaiger E. Changes of mitochondrial respiration, mitochondrial content and cell size after induction of apoptosis in leukemia cells. Biochim Biophys Acta - Mol Cell Res. 2003;1642:115–23. https://doi.org/10.1016/s0167-4889(03)00105-8

    Article  CAS  Google Scholar 

  78. Gnaiger E. Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir Physiol. 2001;128:277–97. https://doi.org/10.1016/s0034-5687(01)00307-3

    Article  CAS  PubMed  Google Scholar 

  79. Robinson MM, Sather BK, Burney ER, Ehrlicher SE, Stierwalt HD, Franco MC, et al. Robust intrinsic differences in mitochondrial respiration and H2O2 emission between L6 and C2C12 cells. Am. J Cell Physiol. 2019;317:C339–47. https://doi.org/10.1152/ajpcell.00343.2018

    Article  CAS  Google Scholar 

  80. Nishikimi M, Appaji Rao N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46:849–54. https://doi.org/10.1016/s0006-291x(72)80218-3

    Article  CAS  PubMed  Google Scholar 

  81. Miller RW, Kerr CT. Dihydroorotate dehydrogenase. J Biol Chem. 1966;241:5597–604. https://doi.org/10.1016/S0021-9258(18)96386-6

    Article  CAS  PubMed  Google Scholar 

  82. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  83. Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–21. https://doi.org/10.1016/s0076-6879(84)05015-1.

    Article  PubMed  Google Scholar 

  84. Ziegenhorn J, Senn M, Buecher T. Molar absorptivities of NADH and NADPH. Clin Chem. 1976;22:151–60.

    Article  CAS  PubMed  Google Scholar 

  85. Sies H, Koch OR, Martino E, Boveris A. Increased biliary glutathione disulfide release in chronically ethanol-treated rats. FEBS Lett. 1979;103:287–90. https://doi.org/10.1016/0014-5793(79)81346-0

    Article  CAS  PubMed  Google Scholar 

  86. Voss DO, Campallo AP, Bacila M. The respiration chain and the oxidative phosphorylation of rat brain mitochondria. Biochem Biophys Res Commun. 1961;4:48–51. https://doi.org/10.1016/0006-291x(61)90253-4

    Article  CAS  PubMed  Google Scholar 

  87. Voss DO, Cowles JC, Bacila M. A new oxygen electrode model for the polarographic assay of cellular and mitochondrial respiration. Anal Biochem. 1963;6:211–22. https://doi.org/10.1016/0003-2697(63)90128-3

    Article  CAS  PubMed  Google Scholar 

  88. Estabrook RW. Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol. 1967;10:41–7. https://doi.org/10.1016/0076-6879(67)10010-4

    Article  CAS  Google Scholar 

  89. Chance B, Williiams GR. Respiratory enzymes in oxidative phosphorylation. II. Difference spectra J Biol Chem. 1955;217:395–407.

    CAS  PubMed  Google Scholar 

  90. Singer T. Determination of the activity of succinate, NADH, choline, and a-glycerophosphate dehydrogenases. Methods Biochem Anal. 1974;22:123–75. https://doi.org/10.1002/9780470110423.ch3

    Article  CAS  PubMed  Google Scholar 

  91. Appleyby CA, Morton RK. Lactic dehydrogenase and cytochrome b2 of Baker’ s yeast. J Am Chem Soc. 1959;71:492–9. https://doi.org/10.1042/bj0710492.

    Article  Google Scholar 

  92. Arif MI, Samin G, van Leeuwen JGE, Oppentocht J, Janssen DB. Novel dehalogenase mechanism for 2,3-Dichloro-1-propanol utilization in Pseudomonas putida strain MC4. Appl Environ Microbiol. 2012;78:6128–36. https://doi.org/10.1128/AEM.00760-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Somlo M. Induction des lactico-cytochrome c reductases (d-et l-) de la levure aerobie par les lactates (d- et l-). Biochim Biophys Acta - Gen Subj. 1965;97:183–201. https://doi.org/10.1016/0304-4165(65)90083-8

    Article  CAS  Google Scholar 

  94. Mason TL, Poyton R, Wharton DC. Cytochrome c Pxidase from Bakers’ Yeast I. Isolation and properties. J Biol Chem. 1973;248:1346–54.

    Article  CAS  PubMed  Google Scholar 

  95. Pullman ME, Hervey SPS. Partial resolution of the enzymes catalyzing oxidative phosphorylation: purification and properties of souble, dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960;235:3322–9.

    Article  CAS  PubMed  Google Scholar 

  96. Chen PS, Toribara TY, Warner H. Microdetermination of phosphorus. Anal Chem. 1956;28:1756–58. https://doi.org/10.1021/ac60119a033

    Article  CAS  Google Scholar 

  97. McComb RB, Bond LW, Burnett RW, Keech RC, Bowers GNJ. Determination of the molar absorptivity of NADH. Clin Chem. 1976;22:141–50.

    Article  CAS  PubMed  Google Scholar 

  98. Miccoli L, Oudard S, Sureau F, Poirson F, Dutrillaux B, Poupon MF. Intracellular pH governs the subcellular distribution of hexokinase in a glioma cell line. Biochem J 1996;313:957–62. https://doi.org/10.1042/bj3130957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Deng H, Yu F, Chen J, Zhao Y, Xiang J, Lin A. Phosphorylation of Bad at Thr-201 by JNK1 promotes glycolysis through activation of phosphofructokinase-1. J Biol Chem. 2008;283:20754–60. https://doi.org/10.1074/jbc.M800024200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yi W, Clark PM, Mason DE, Keenan MC, Hill C, Goddard WA, et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. 2012;337:975–80. https://doi.org/10.1126/science.1222278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research study was supported by Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander, Colombia; COLCIENCIAS project code 110265842934. LCV wants to thank Colciencias for Scholarship fellowships 647 Doctorados nacionales.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stelia Carolina Mendez-Sánchez or Arnold R. Romero Bohórquez.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vesga, L.C., Silva, A.M.P., Bernal, C.C. et al. Tetrahydroquinoline/4,5-dihydroisoxazole hybrids with a remarkable effect over mitochondrial bioenergetic metabolism on melanoma cell line B16F10. Med Chem Res 30, 2127–2143 (2021). https://doi.org/10.1007/s00044-021-02796-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02796-5

Navigation