Skip to main content
Log in

Anxiolytic and anticonvulsant activity followed by molecular docking study of ceramides from the Red Sea sponge Negombata sp

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The chemical investigation of the Red Sea sponge Negombata sp. led to isolation and structure elucidation of five new ceramides N ((2S,3R,4E,8E)-1,3-dihydroxyhexacosa-4,8-dien-2-yl)pentadecanamide (1), N-((2S,3R,E)-1,3-dihydroxynonadec-4-en-2-yl)stearamide (2), N-[(2S,3R,E)-1,3 dihydroxyhexacos-4-en-2-yl]palmitamide (3), N-((2S,3R)-1,3-dihydroxydodecan-2-yl)tetradecanamide (4), N-[(2S,3S,4R)-1,3,4- trihydroxypentadecan-2-yl] palmitamide (5). Structure elucidation was achieved using spectroscopic techniques, including 1D and 2D NMR and HRMS. The isolated ceramides were tested for anti-anxiety action in the elevated plus maze and the light-dark transition box. Mice given diazepam or compounds number 1, 2, 3, and 5 spent longer time in the light area of the light-dark box. However, compound 4 did not produce a similar effect. Similarly, testing anti-anxiety action in the elevated plus maze test showed that the compounds number 2, 3, and 5 or diazepam were able to prolong the open arm time %. Meanwhile, compounds 1 and 4 failed to produce a similar response. In addition, the anticonvulsant action of the ceramides was assessed employing pentylenetetrazole-induced seizures, where some ceramides prolonged the time to death due to pentylenetetrazole in vivo. In silico testing of the isolated ceramides displayed reasonable GABA receptor modulator binding at the benzodiazepines site. Ceramide 1 showed slightly stronger interaction with the GABA receptor over other ceramides which is compatible with the results of their anxiolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed, S, Khalifa S, Mesbah M, Youssef D, Hamann, MT (2005) 26th African Health Sciences Congress, Egypt, Abs. 183

  • Ahmed S, Mesbah M, Youssif D, Khalifa S (2006) Chemical and biological investigations of the Red Sea Sponge Negombata corticata. Bull Pharm Sci (Assuiut University) 29(1):67–75

  • Ahmed SA, Khalifa SI, Hamann MT (2008) Antiepileptic ceramides from the Red Sea sponge Negombatacorticata. J Nat Prod 71:513–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beresewicz A, Dobrzyn A, Gorski J (2002) Accumulation of specific ceramides in ischemic/repefused rat heart; effect of ischemic preconditioning. J Physiol Pharmacol 53:371–382

    CAS  PubMed  Google Scholar 

  • Bieberich E (2012) It’s a lipid’s world: bioactive lipid metabolism andsignaling in neural stem cell differentiation. Neurochem, Res 37:1208–1229

    Article  CAS  Google Scholar 

  • Chao C, Chou K, Wang G, Wu Y, Wang L, Chen J, Sheu J, Sung P (2010) Norterpenoids and Related Peroxides from the Formosan Marine Sponge Negombata corticata. J Nat Prod 73:1538–1543

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Engelman RM, Maulik N, Das DK (2004) Role of ceramide in ischemic preconditioning. J Am Coll Surg 198:770–777

    Article  PubMed  Google Scholar 

  • Eltahawy NA, Ibrahim AK, Radwan MM, Zayton S, Gomaa M, ElSohly MA, Hassanean HA, Ahmed SA (2015) Mechanism of action of antiepileptic ceramide from Red Sea soft coral Sarcophyton auritum. BMCL 24:3467–3473

    Google Scholar 

  • Holmes A, Rodgers RJ (1998) Responses of Swiss-Webster mice to repeated plus-maze experience: further evidence for a qualitative shift in emotional state? Pharmacol Biochem Behav 60(2):473–488

    Article  CAS  PubMed  Google Scholar 

  • Inagakia M, Isobeb R, Kawanoa Y, Miyamotoa T, Komoria T, Higuchi R (1998) A convergent total synthesis of the michellamines. Eur J Org Chem 63(4):129–131

    Article  Google Scholar 

  • Izumi E, Ueda-Nakamura T, Veiga Jr VF, Pinto AC, Nakamura CV (2012) Terpenes from Copaifera demonstrated in vitro antiparasitic and synergic activity. Int J Med Chem 55:2994–3001

    Article  CAS  Google Scholar 

  • Jagannatha LokeshShetty (2015) Animal models for pre-clinical antiepileptic drug research. Sci, Technol Dev 34:82–85

    Article  Google Scholar 

  • Kornhuber J, Müller CP, Becker KA, Reichel M, Gulbins E (2014) The ceramide system as a novel antidepressant target. Trends Pharm Sci 35:293–304

    Article  CAS  PubMed  Google Scholar 

  • Kubota M, Narita K, Nakkagomi T, Tamura A, Shimasaki H, Ueta N, Yoshida S (1996) Sphingomyelin changes in rat cerebral cortex during focal ischemia. Neurol Res 18:337–341

    Article  CAS  PubMed  Google Scholar 

  • Kuksis A (Ed.) (1978) Separation and determination of structure of fatty acids. Handbook of lipid research fatty acids and glycerides, Springer, New York, p 1–76

  • Kwon HC, Lee KC, Cho OR, Jung IY, Cho SY, Kim SY, Lee KR (1991) J Nat Prod 66:466–469

    Article  CAS  Google Scholar 

  • Lecour S, Van der Merne E, Opie LH, Sack MN (2006) Ceramide attenuates hypoxic cell death via reactive oxygen species signaling. J Cardiovasc Pharmacol 47:158–163

    Article  CAS  PubMed  Google Scholar 

  • Lemieux RU, Von rudlo E (1955) Periodate-permanganate oxidations I. oxidation of olefins. Can J Chem 33:1701–1709

    Article  CAS  Google Scholar 

  • Loscher Wolfgang (2011) Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, Eur J Epilepsy 20:359–368

    Article  Google Scholar 

  • Naderi N, Haghparast A, Saber-Tehrani A, Rezaii N, Alizadeh AM, Khani A, Motamedi F (2008) Interaction between cannabinoid compounds and diazepam on anexiety-like behaviour of mice. Pharmacol Biochem Behav 89:64–75

    Article  CAS  PubMed  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley(1985) Closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14(3):149–167

    Article  CAS  PubMed  Google Scholar 

  • Puyana M, Pawlik J, Plum Finical W (2015) Metabolite variability in Caribbean sponges of the genus. Aplysina 25(6):592–599

    CAS  Google Scholar 

  • Rodgers RJ, Haller J, Halasz J, Mikics N (2003) One trial sensitization to the anxiolytic like effects of cannabinoid receptor antagonist SR141716A in mouse elevated plus maze. Eur J Neurosci 17:1279–1286

    Article  CAS  PubMed  Google Scholar 

  • Sipkema D, Franssen M, Osinga R, Tramper J, Wijffels R (2005) Marine sponge as pharmacy. Mar Biotechnol l7:142–162

    Article  CAS  Google Scholar 

  • Steve White H, Misty Smith-Yockman, Ajay Srivastava, Karen S Wilcox (2006) Therapeutic assays for the identification and characterization of antiepileptic and antiepileptogenic drugs. Models of seizures and epilepsy, 539–549, Elsevier, Amsterdam

  • Sugiyama S, Honda M, Higuchi R, Komori T (1991) Stereochemistry of the four diastereomers of ceramide and ceramide lactoside. Liebigs Ann Chem 4:349–356

    Article  Google Scholar 

  • Sun Y, Xu Y, Liu K, Hua H, Zhu H, Pei Y (2006) Gracilarioside and gracilamides from the Red Alga Gracilaria asiatica. J Nat Prod 69:1488–1491

    Article  CAS  PubMed  Google Scholar 

  • Torres FA, Passalacqua TG, Velásquez AMA, de Souza RA, Colepicolo P, Graminha MA (2014) New drugs with antiprotozoal activity from marine algae: a review. Rev Bras Farmacogn 24:265–276

    Article  CAS  Google Scholar 

  • Wang G, Beibrich E (2018) Sphingolipids in neurodegeneration (with focus on ceramide and S1P). Adv Biol Regul 70:51–64. https://doi.org/10.1016/j.jbior.2018.09.013. Epub 22 Sep 2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White HS (2003) Preclinical development of antiepileptic drugs: past, present and future directions. Epilepsia 44:2–8

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Tang Y, Zhao L, Wang Q, Qin W, Ji X, Zhang J, Jia J (2016) Associations between plasma ceramides and cognitive and neuropsychiatric manifestations in Parkinson’s disease dementia. J Neurol Sci 370:82–87. https://doi.org/10.1016/j.jns.2016.09.028. [PubMed] [CrossRef] [Google Scholar]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are appreciative to R.W.M. van Soest, Faculty of Science, Zoological museum Amsterdam for taxonomic identification of the samples of the sponge. Also thanks are due to the Egyptian Environmental Affairs Agency (EEAA) for facilitating sample collection along the Red Sea coasts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Safwat A. Ahmed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eltahawy, N.A., Ibrahim, A.K., Gomaa, M.S. et al. Anxiolytic and anticonvulsant activity followed by molecular docking study of ceramides from the Red Sea sponge Negombata sp. Med Chem Res 28, 1818–1827 (2019). https://doi.org/10.1007/s00044-019-02408-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-019-02408-3

Keywords

Navigation