Skip to main content
Log in

QSAR and pharmacophore modeling of anti-tubercular 6-Fluoroquinolone compounds utilizing calculated structural descriptors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Most alarming is the emergence of multidrug-resistant-tuberculosis. Multidrug-resistant-tuberculosis urgently needs to develop new second-line anti-mycobacterial chemotherapeutic including 6-fluoroquinolones. In the present study, an attempt has been made for the development of quantitative structure–activity relationship models utilizing theoretical structural descriptors calculated from the structure of 6-flouoroquinolone compounds. A number of quantitative structure–activity relationship has been generated and validated as per the statistical rules. Then the validated quantitative structure–activity relationship models have been applied for prediction of anti-mycobacterial activities for the test set of congeneric 6-FQ compounds. Further mode of binding was studied by pharmacophore modeling, which can predict the crucial features for the design of highly active congeneric ligands. It was shown that C-7 and C-8 substituent may contribute hydrophobic interaction, positive ionization of C-7 and hydrogen bonding interactions between the substituents associated to C-8 group with the DNA gyrase target may enhance the biological activities in these congeneric ligands. Basic scaffold contributes aromaticity and represents pi-stacking interaction domain. The study in this direction may focus important structural descriptors modeled in quantitative structure–activity relationship, which are crucial for the designing of new lead like active congeneric compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham DJ (2003) Burger’s medicinal chemistry and drug discovery, vol 1. Wiley, Virginia, pp 60–61

  • Allinger NL (1977) Conformational analysis. 130. MM2. A hydrocarbon interatomic potential utilizing V1 and V2 torsional terms. J Am Chem Soc 99:8127–8134

    Article  CAS  Google Scholar 

  • Alegaon SG, Alagawadi KR, Sonkusare PV, Chaudhary SM, Dadwe DH, Shah AS (2012) Imidazo(2,1-b)(1,3,4)thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg Med Chem Lett 22:1917–1921

    Article  CAS  PubMed  Google Scholar 

  • Ambure P, Aher RB, Gajewicz A, Puzyn AT, Roy K (2015) “NanoBRIDGES” software, Open access tools to perform QSAR and nano-QSAR modeling. Chemometr Intell Lab Syst 147:1–13

    Article  CAS  Google Scholar 

  • Bagchi MC, Mills D, Basak SC (2007) Quantitative structure-activity relationship (QSAR) studies of quinolone antibacterials against M. fortuitum and M. smegmatis using theoretical molecular descriptors. J Mol Model 13:111–120

    Article  CAS  PubMed  Google Scholar 

  • Batra A, Nandi S, Bagchi MC (2015) QSAR and pharmacophore modeling of indole-based C-3 pyridone compounds as HCV NS5B polymerase inhibitors utilizing computed molecular descriptors. Med Chem Res 24:2432–2440

    Article  CAS  Google Scholar 

  • Bhatt JD, Chudasama CJ, Patel KD (2015) Pyrazole clubbed triazolo[1,5-a]pyrimidine hybrids as an antitubercular agents. Synthesis, in vitro screening and molecular docking study. Bioorg Med Chem 23:7711–7716

    Article  CAS  PubMed  Google Scholar 

  • Central TB Division (CTD) (2012). Guideline on programmatic management of drug resistant TB (PMDT) in india. http://www.tbindia.nic.in/pdfs/guideline%20for%20PMDT%20in%20india%20-%20May%202012.pdf. Accessed 16 Sep 2014

  • Chu DTW, Fernandes PB (1998) Structure-activity relationships of the fluoroquinolones. Antimicrob Agents Chemother 33:131–135

    Article  Google Scholar 

  • Chu D, Fernandes P, Claiborne A, Pihuleac E, Nordeen C, Maleczka R, Pernet A (1920) Synthesis and structureactivityrelationships of novel arylfluoroquinolone antibacterialagents. J Med Chem 28:1558–1564

    Article  Google Scholar 

  • Daren Z (2001) QSPR studies of PCBs by the combination of genetic algorithm and PLS Analysis. J. Comp Chem 25:197–204

    Article  CAS  Google Scholar 

  • Dearden JC (2016) The history and development of quantitative structure-activity relationships (QSARs). Int J Quant Struct Prop Relat 1(1):1–44

    Google Scholar 

  • Ehlers MRW, Daffé M (1998) Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key. Trends Microbiol 6:328–335

    Article  CAS  PubMed  Google Scholar 

  • Faustini A, Hall AJ, Perucci CA (2006) Risk factors for multidrug resistant tuberculosis in Europe. a systematic review. Tuberculosis 61:158–163

    CAS  Google Scholar 

  • Foroumadi A, Emami S, Hassanzadeh A, Rajaee M, Sokhanavr K, Moshafi MH, Shafiee A (2005) Synthesis and antibacterial activity of N-(5-benzylthio-1,3,4-thiadiazol-2-yl) and N-(5-benzylsulfonyl-1,3,4-thiadiazol-2-yl)piperazinyl quinolone derivatives. Bioorg Med Chem Lett 15(20):488–492

    Google Scholar 

  • Gadaleta D, Mangiatordi GF, Catto M, Carotti A, Nicolotti O (2016) Applicability domain for qsar models: where theory meets reality. Int J Quant Struct Prop Relat 1(1):45–63.

    Google Scholar 

  • Gadad AK, Noolvi MN, Karpoormath RV (2004) Synthesis and anti-tubercular activity of a series of 2-sulfonamido/trifluoromethyl-6-substituted imidazo-[2,1-b]-1,3,4-thiadiazole derivatives. Bioorg Med Chem 12:5651–5659

    Article  CAS  PubMed  Google Scholar 

  • Gellert M, Mizuuchi K, O'Dea MH, Itoh T, Tomizawa J (1977) Nalidixic acid resistance. a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci USA 74:4772–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh P, Thanadath M, Bagchi MC (2006) on an aspect of calculated molecular descriptors in QSAR studies of quinolone antibacterials. Mol Divers 10:415–427

    Article  CAS  PubMed  Google Scholar 

  • Jaworska J, Nikolova-Jeliazkova N, Aldenberg T (2005) QSAR applicability domain estimation by projection of the training set descriptor space: a review. Altern Lab Anim 33:445

    CAS  PubMed  Google Scholar 

  • Joshi SD, Morea UA, Kolia D, Kulkarnia MS, Nadagoudaa MN, Aminabhavia TMSynthesis (2015) Evaluation and in silico molecular modeling of pyrroyl-1,3,4-thiadiazole inhibitors of InhA. Bioorg Chem 59:151–167

    Article  CAS  PubMed  Google Scholar 

  • Katritzky AR, Petrukhin R, Tatham D, Basak S, Benfenati E, Karelson M, Maran UJ (2001) Chem Inf Comput Sci 41:679–685

    Article  CAS  Google Scholar 

  • Klopman G, Macina OT, Levinson ME, Rosenkranz HS (1987) Computer-automated structure evaluation of fluoroquinoloneantibacterial agents. Antimicrob Agents Chemother 31:1831–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langer T, Krovat EM (2003) Chemical feature-based pharmacophores and virtual library screening for discovery of new leads. Curr.Opin. Drug Discov Dev 6:370–376

    CAS  Google Scholar 

  • Leach AR, Gillet V, Lewis J, Taylor AR (2009) Three dimensional pharmacophore methods in drug discovery. J Med Chem 53:539–558

    Article  Google Scholar 

  • Leardi R (2001) Genetic algorithm in chemometrics and chemistry: a review. J Chemom 15:559–56

    Article  CAS  Google Scholar 

  • Menendez C, CholletA, Rodriguez F, Inard C, Pasca MR, Lherbet C, Baltas M (2012) Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur J Med Chem 52:275–283

    Article  CAS  PubMed  Google Scholar 

  • Mills N (2006) Chemdraw ultra 10.0. J Am Chem Soc 128:13649–13650

    Article  CAS  Google Scholar 

  • Minovski N, Vracko M, Solmajer T (2011) Quantitative structure–activity relationship study of antitubercular fluoroquinolones. Mol Divers 15:417–426

    Article  CAS  PubMed  Google Scholar 

  • Minovski N, Perdih A, Solmajer T (2012) Combinatorially-generated library of 6- fluoroquinolone analogs as potential novel antitubercular agents: a chemometric and molecular modeling assessment. J Mol Model 18(5):1735–53

    Article  CAS  PubMed  Google Scholar 

  • Nandi S, Bagchi MC (2014) QSAR modeling of 4-anilinofuro [2, 3-b]quinolines: an approach to anticancer drug design. Med Chem Res 23:1672–1682

    Article  CAS  Google Scholar 

  • Nuermberger EL, Spigelman MK, Yew W (2010) Current development and future prospects in chemotherapy of tuberculosis. Respirology 15:764–778

    Article  PubMed  PubMed Central  Google Scholar 

  • OECD (2007) Guidance document on the validation of (quantitative) structure–activity relationships (Q)SARs Models, ENV/JM/MONO(2007)2. www.oecd.org

  • Patrick GL (2003) Antibacterial agents. In: An introduction to medicinal chemistry. Oxford University Press, Oxford, UK, pp 379–435

  • Parihar N, Nandi S (2015) In‑silico combinatorial design and pharmacophore modeling of potentantimalarial 4‑anilinoquinolines utilizing QSARand computed descriptors. SpringerPlus 4:819

    Article  Google Scholar 

  • Reanau TE, Sanchiez JP, Gage JW, Dever JA, Shapiro MA, Gracheck SJ, Domagala J (1996a) Structure-activity relationships of the quinolone antibacterials against mycobacteria: effect of structural changes at N-1 and C-7. J Med Chem 39:729–735

    Article  Google Scholar 

  • Reanau TE, Gage JW, Dever JA, Roland GE, Joannides ET, Shapiro MA, Sanchiez JP, Gracheck SJ, Domagala JM, Jacobs MR, Reynolds RC (1996b) Structure-activity relationships of quinolone agents against mycobacteria, effect of structural modification at the 8 position. Antimicrob Agents Chemother 40:2363–2368

    Google Scholar 

  • Roy PP, Roy K (2009) Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA PLS and ANN techniques. Eur J Med Chem 44:2913–2922

    Article  CAS  PubMed  Google Scholar 

  • Roy K, Chakraborty P, Mitra I, Ojha PK, Kar S, Das RN (2013) Some case studies on application of ‘‘rm 2” metrics for judging quality of quantitative structure–activity relationship predictions: emphasis on scaling of response data. J Comput Chem 34:1071–1082

    Article  CAS  PubMed  Google Scholar 

  • Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment, 1st edn. Academic press, Elsevier

  • Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemometr Intell Lab Sys 145:22–29

    Article  CAS  Google Scholar 

  • Schuster D, Langer T (2005) The identification of ligand features essential for PXR activation by pharmacophore modeling. J Chem Inf Model 45:31

    Article  Google Scholar 

  • Schentag J, Domagala J (1985) Structure-activity relationships with the quinolone antibiotics. Res Clin Forums 7:9–13

    CAS  Google Scholar 

  • Sullivan TJ, Truglio JJ, Boyne ME, Novichenok P, Zhang X, Stratton CF et al. (2006) High affinity InhA inhibitors with activity against drug-resistant strains of Mycobacterium tuberculosis. ACS Chem Biol 1:43–53

    Article  CAS  PubMed  Google Scholar 

  • Todeschini R, Consonni V. (2006) Dragon software (version 5.4). Milano. TALETE srl, Milano, Italy

  • Todeschini R, Consonni V (2009) Molecular descriptors for chemoinformatics, revised and enlarged edition, 2nd edn. Wiley, Weinheim

    Book  Google Scholar 

  • Tripathi KD (2006) Essentials of Medical Pharmacology, 6th Ed.. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi, p 745–750

    Google Scholar 

  • WHO (2015) Global tuberculosis report, 20th edn. World Health Organization. Geneva, Switzerland

  • Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model 45:160–169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Professor Kunal Roy, Drug Theoretics and Chemoinformatics Lab, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India for providing “NanoBRIDGES” software. SN is sincerely thankful to National Institute of Chemistry, Ljubljana for availing DRAGON and Ligand Scout softwares used in the present work. Authors show deep gratitude to Dr. Anil Kumar Saxena, Ex-Chief Scientist and Head, Medicinal and Process Chemistry Division, CSIR Central drug Research Institute, India for the constructive predictions in 3D pharmacophoric feature based modeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sisir Nandi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dipiksha, Salman, M. & Nandi, S. QSAR and pharmacophore modeling of anti-tubercular 6-Fluoroquinolone compounds utilizing calculated structural descriptors. Med Chem Res 26, 1903–1914 (2017). https://doi.org/10.1007/s00044-017-1882-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1882-1

Keywords

Navigation