Skip to main content
Log in

Synthesis, structural and thermal characterizations, dielectric properties and in vitro cytotoxic activities of new 2,2,4,4-tetra(4′-oxy-substituted-chalcone)-6,6-diphenylcyclotriphosphazene derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this study, we aimed to investigate the relationship between the cytotoxic and dielectric properties of newly synthesized 2,2,4,4-tetra(4′-oxy-substituted-chalcone)-6,6-diphenylcyclotriphosphazene derivatives (3–10). Firstly, 2,2,4,4-tetrachloro-6,6-diphenyl cyclotriphosphazene (2) was obtained through Friedel Crafts alkylation in the presence of hexachlorocyclotriphosphazene, benzene and triethylamine and anhydrous AlCl3. The compounds 3–10 were synthesized from the reaction of the hydroxychalcone compounds (1a–h) with 2 in the presence of K2CO3 and within the acetone solvent for the first time and their dielectric constant, dielectric loss factor and ac conductivity of compounds 3–10 were examined through the impedance analyzer as a function of frequency. The in vitro cytotoxic activities of compounds 3–10 in five different concentrations (1, 5, 25, 50, and 100 µM) were analyzed by colorimetric MTT assay which is based on reduction of MTT salt by mitochondria of alive cells over the human ovarian cancer (A2780) and human prostate cancer (PC-3 and LNCaP) cell lines. The LogIC50 values of 3–10 were calculated by using a Graphpad prism 6 programs on a computer. The obtained results suggests that the compounds have a powerful cytotoxic activity (especially A2780, p < 0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allcock HR (1972) Phosphorus-nitrogen compounds: Cyclic, linear, and high polymeric systems. Academic Press Inc, New York, NY

    Google Scholar 

  • Allcock HR, McIntosh MB, Klingenberg EH, Napierala ME (1998) Functionalized Polyphosphazenes: polymers with pendent tertiary trialkylamino groups. Macromolecules 31:5255–5263

    Article  CAS  Google Scholar 

  • Allen CW (1992) In: Studies in inorganic chemistry R. Steudel (ed), Elsevier, Amsterdam, 14, pp 171–191.

  • Akbaş H, Okumus A, Karadag A, Kilic A, Hokelek T, Koc LY, Açık L, Aydin B, Turk M (2016) Phosphorus–nitrogen compounds Part 32. Structural and thermal characterizations, antimicrobial and cytotoxic activities, and in vitro DNA binding of the phosphazenium salts. J Therm Anal Calorim 123:1627–1641

    Article  Google Scholar 

  • Baggio R, Brovelli F, Moreno Y, Pinto M, Delgado JS (2016) Structural, electrochemical and theoretical study of a new chalcone derivative containing 3-thiophene rings. J Mol Struct 1123:1–7

    Article  CAS  Google Scholar 

  • Bahekar SP, Hande SV, Agrawal NR, Chandak HS, Bhoj PS, Goswami K, Reddy MVR (2016) Sulfonamide chalcones: synthesis and in vitro exploration for therapeutic potential against Brugia malayi. Eur J Med Chem 124:262–269

    Article  CAS  PubMed  Google Scholar 

  • Bao R, Pan M, Qiu JJ, Liu CM (2010) Synthesis and characterization of six-arm star-shaped liquid crystalline cyclotriphosphazenes. Chin Chem Lett 21:682–685

    Article  CAS  Google Scholar 

  • Başterzi NS, Koçak SB, Okumuş A, Kılıç Z, Hökelek T, Çelik Ö, Türk M, Koç LY, Açık L, Aydın B (2015) Syntheses, structural characterization and biological activities of spiro-ansa-spirocyclotriphosphazenes. New J Chem 39:8825–8839

    Article  Google Scholar 

  • Benson MT, Harrup MK, Gering KL (2013) Lithium binding in fluorinated phosphazene trimers. Comput Theor Chem 1005:25–34

    Article  CAS  Google Scholar 

  • Biryan F, Demirelli K (2016) A methacrylate monomer bearing nitro, aryl, and hydroxyl side groups: homopolymerization, characterization, dielectric, and thermal degradation behaviors. J Appl Polym Sci 133:43925–43939

    Article  Google Scholar 

  • Boeck P, Leal PC, Yunes RA, Filho VC, Lopez S, Sortino M, Escalante A, Furlan RLE, Zacchino S (2005) Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. Arch Pharm Chem Life Sci 338:87–95

    Article  CAS  Google Scholar 

  • Brandt K, Kruszynski R, Bartzak TJ, Czomperlik IP (2001) AIDS-related lymphoma screen results and molecular structure determination of a new crown ether bearing aziridinylcyclophosphazene, potentially capable of ion-regulated DNA cleavage action. Inorganica Chim Acta 322:138

    Article  CAS  Google Scholar 

  • Damazio RG, Zanatta AP, Cazarolli LH, Chiaradia LD, Mascarello A, Nunes RJ, Yunes RA, Silva FRMB (2010) Antihyperglycemic activity of naphthylchalcones. Eur J Med Chem 45:1332–1337

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed YS, Gaber M (2015) Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity. Spectrochim Acta A Mol Biomol Spectrosc 137:423–431

    Article  CAS  PubMed  Google Scholar 

  • Fayed TA, Awad MK (2004) Dual emission of chalcone-analogue dyes emitting in the red region. Chem Phys 303:317–326

    Article  CAS  Google Scholar 

  • Funiss BS, Hannford AJ, Smith PWG, Tatchell AR (2004) Claisen-Schmidt and related reactions. Vogel’s Textbook of Practical Organic Chemistry. 5th edn. Longman, p 1032

  • Gleria M, De Jaeger R (2004) Phosphazenes: A Worldwide Insight. Nova Science Publishers, Inc, New York, NY

    Google Scholar 

  • Görgülü AO, Koran K, Ozen F, Tekin S, Sandal S (2015) Synthesis, structural characterization and anti-carcinogenic activity of new cyclotriphosphazenes containing dioxybiphenyl and chalcone groups. J Mol Struct 1087:1–10

    Article  Google Scholar 

  • Herencıa F, Ferrandız ML, Ubeda A, Domınguez JN, Charris JE, Lobo GM, Alcarez MJ (1998) Synthesis and anti-inflammatory activity of chalcone derivatives. Bioorg Med Chem 8:1169–1174

    Article  Google Scholar 

  • I-Monica M, Ghinet A, Belei D, Dubois J, Farce A, Bicu E (2016) New indolizine–chalcones as potent inhibitors of human farnesyltransferase: design, synthesis and biological evaluation. Bioorg Med Chem Lett 26:3730–3734

    Article  Google Scholar 

  • Jayashree BS, Patel HH, Mathew NS, Nayak Y (2016) Synthesis of newer piperidinyl chalcones and their anticancer activity in human cancer cell lines. Res Chem Intermed 42:3673–3688

    Article  CAS  Google Scholar 

  • Jiang P, Gu X, Zhanga S, Sun J, Wua S, Zhao Q (2014) Syntheses and characterization of four phosphaphenanthrene and phosphazene-based flame retardants. Phosphorus Sulfur Silicon Relat Elem 189:1811–1822

    Article  CAS  Google Scholar 

  • Kitawat BS, Singh M, Kale RK (2013) Solvent free synthesis, characterization, anticancer, antibacterial, antifungal, antioxidantand SAR studies of novel (E)-3-aryl-1-(3-alkyl-2-pyrazinyl)-2-propenone. New J Chem 37:2541–2550

    Article  CAS  Google Scholar 

  • Kucukbay H, Mumcu A, Tekin S, Sandal S (2016) Synthesis and evaluation of novel N,N′N,N′-disubstituted benzimidazolium bromides salts as antitumor agents. Turkish J Chem 40:393–401

    Article  Google Scholar 

  • Koran K, Özen F, Biryan F, Demirelli K, Görgülü AO (2016) Eu+3-doped chalcone substituted cyclotriphosphazenes: Synthesis, characterizations, thermal and dielectrical Properties. Inorganica Chim Acta 450:162–169

    Article  CAS  Google Scholar 

  • Koran K, Özen F, Biryan F, Görgülü AO (2016) Synthesis, structural characterization and dielectric behavior of new oxime-cyclotriphosphazene derivatives. J Mol Struct 1105:135–141

    Article  CAS  Google Scholar 

  • Koran K, Özen F, Torğut G, Pıhtılı G, Çil E, Görgülü AO, Arslan M (2014) Synthesis, characterization and dielectric properties of phosphazenes containing chalcones. Polyhedron 78:213–220

    Article  Google Scholar 

  • Lin YM, Zhou Y, Flavın MT, Zhou LM, Nıe W, Chen FC (2002) Chalcones and flavonoids as anti-Tuberculosis agents. Bioorg Med Chem 10:2795–2802

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Li Y, Zhang H, Wang J, Li F, Tang X (2002) Synthesis and characterization of polyphosphazenes with sulfur-bearing substituents. Mater Chem Phys 73:93–96

    Article  CAS  Google Scholar 

  • Mager L, Melzer C, Barzoukas M, Fort A, Mery S, Nicoud JF (1997) High net gain at 514 nm in a photorefractive polymer doped with a chalcone derivative. Appl Phys Lett 71:2248–2250

    Article  CAS  Google Scholar 

  • Modzelewska A, Pettit C, Achanta G, Davidson NE, Huang P, Khan SR (2006) Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg Med Chem 14:3491–3495

    Article  CAS  PubMed  Google Scholar 

  • Mosamann TR, Cherwinski H, Bond MV, Giedlin MA, Coffmann RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    Google Scholar 

  • McBee ET, Okuhara K, Morton CJ (1965) Modified friedel-crafts preparation of 2,2,4,4-Tetrachloro-6,6-diphenylcyclotriphosphazatriene. Inorg Chem 4:1672–1673

    Article  CAS  Google Scholar 

  • Neilson RH, Hani R, Neilson PW, Meister JJ, Roy AK, Hagnauer GL (1987) Synthesis and characterization of poly(alkyl/arylphosphazenes). Macromolecules 20:910–916

    Article  CAS  Google Scholar 

  • Ozay H, Yildiz M, Dulger B, Unver H (2010) Synthesis, spectroscopic studies and antimicrobial activity of tetrakis(4-bromo-2- formylphenoxy)cyclotriphosphazene and its imino-amino derivatives. Asian J Chem 22:3813–3823

    CAS  Google Scholar 

  • Özen F, Tekin S, Koran K, Sandal S, Görgülü AO (2016) Synthesis, structural characterization, and in vitro anti-cancer activities of new phenylacrylonitrile derivatives. Appl Biol Chem 59:239–248

    Article  Google Scholar 

  • Patil CB, Mahajan SK, Katti SA (2009) Chalcone: a versatile molecule. J Pharm Sci Res 1:11–22

    CAS  Google Scholar 

  • Rao YK, Fang SH, Tzeng YM (2004) Differential effects of synthesized 2′-oxygenated chalcone derivatives: modulation of human cell cycle phase distribution. Bioorg Med Chem 12:2679–2686

    Article  CAS  PubMed  Google Scholar 

  • Reynes M, Virieux D, Jeannin O, Fourmigue M, Moreau J, Dautel OJ (2016) Crystal structure of tris(binol)cyclotriphosphazene. A new clathration system. Tetrahedron Lett 57:4086–4089

    Article  CAS  Google Scholar 

  • Rojo G, Lopez FA, Carriedo GA, Alonso FJG, Martinez JIF (2000) Nonlinear optical properties of high glass-transition temperature polyphosphazene films. Synth Met 115:241–244

    Article  CAS  Google Scholar 

  • Singh KP, Gupta PN (1998) Study of dielectric relaxation in polymer electrolytes. Eur Polym J 34:1023–1029

    Article  CAS  Google Scholar 

  • Singh NK, Singh SB (2002) Biologıcal and solid state electrical conductance properties of the complexes of 1-salicyloyl-4-benzoyl-3-thiosemıcarbazide with manganese(II), cobalt(II), nıckel(II), copper(II), and zınc(II). Synth React Inorg Met Org Chem 32:25–47

    Article  CAS  Google Scholar 

  • Siwy M, Seük D, Kaczmarczyk B, Jaroszewicz I, Nasulewicz A, Pelczynska M, Nevozhay D, Opolski A (2006) Synthesis and in vitro antileukemic activity of some new 1,3-(Oxytetraethylenoxy)cyclotriphosphazene derivatives. J Med Chem 49:806–1810

    Article  CAS  PubMed  Google Scholar 

  • Şenkuytu E, Eçik ET, Durmuş M, Çiftçi GY (2015) Monofunctional amines substituted fluorenylidene bridged cyclotriphosphazenes: ‘turn-off’ fluorescence chemosensors for Cu2+ and Fe3+ ions. Polyhedron 101:223–229

    Article  Google Scholar 

  • Tumer Y, Asmafiliz N, Kılıc Z, Hokelek T, Koc LY, Acık L, Yola ML, Solak AO, Oner Y, Dundar D, Yavuz M (2013) Phosphorus–nitrogen compounds: Part 28. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing vanillinato and pendant ferrocenyl groups. J Mol Struct 1049:112–114

    Article  CAS  Google Scholar 

  • Uslu A, Ün ŞŞ, Kılıç A, Yılmaz Ş, Yuksel F, Hacıvelioğlu F (2013) The synthesis and characterization of 4-isopropylanilino derivatives of cyclotriphosphazene. Inorganica Chim Acta 405:140–146

    Article  CAS  Google Scholar 

  • Zhao B, Liang W-J, Wang J-S, Li F, Liu Y-Q (2016) Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polym Degrad Stab 133:162–173

    Article  CAS  Google Scholar 

  • Xia L, Xia Y, Liu Z (2015) A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries. J Power Sources 278:190–196

    Article  CAS  Google Scholar 

  • Wu JH, Wang XH, Yi YH, Lee KH (2003) Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorg Med Chem Lett 13:1813–1815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by The Scientific & Technological Research Council of Turkey (TUBITAK) (Project Number: 115Z101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenan Koran.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koran, K., Tekin, Ç., Biryan, F. et al. Synthesis, structural and thermal characterizations, dielectric properties and in vitro cytotoxic activities of new 2,2,4,4-tetra(4′-oxy-substituted-chalcone)-6,6-diphenylcyclotriphosphazene derivatives. Med Chem Res 26, 962–974 (2017). https://doi.org/10.1007/s00044-017-1810-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1810-4

Keywords

Navigation