Skip to main content
Log in

High-throughput virtual screening, identification and in vitro biological evaluation of novel inhibitors of signal transducer and activator of transcription 3

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Signal transducer and activator of transcription (STAT) family, encompassing protein molecules that function as a second messenger and transcription factor, are famously known to regulate a multitude of cellular processes including inflammation, cell proliferation, invasion, angiogenesis, metastasis and immune system homeostasis. STAT3 is one of the six members of a family of transcription factors. STAT3 has proved themselves to be interesting candidates for anticancer therapy as they are over-expressed in most cancer cells. Thus, we studied receptor-based molecular docking of STAT3 against natural compounds and further validations of lead molecules in an array of cancer cells. In the present study, we screened approximately 50,000 natural compounds from the IBS. All natural compounds were docked with the X-ray crystal structure of STAT3 (PDB; 1BG1) retrieved from the protein data bank by using Maestro 9.6 (Schrödinger Inc). First, we performed high-throughput virtual screening of IBS against the SH2 domain of STAT3. Further, best 20 compounds that possess minimal Gscore along with 85 natural compounds that had been reported in published literature as having anticancer properties were selected, and molecular docking was performed using the XP (extra precision) mode of GLIDE. We analyzed Gscore and protein–ligand interactions of top ranking compounds. It was discovered in this study, compounds CID252682, CID5281670 (Morin), CID5281672 (Myricetin), CID72277 (Epigallocatechol) and CID65064 (Epigallocatechin Gallate, EGCG) yielded the excellent dock score with the STAT3 concluded with the help of docking-free energy. Moreover, IBS STOCK1N-43090, STOCK1N-66505, STOCK1N-54303, STOCK1N-44634, STOCK1N-45027, STOCK1N-73784, STOCK1N-69597, STOCK1N-73062, STOCK1N-81915 and STOCK1N-70844 have better docking-free energy. Further, we chose EGCG and myricetin compounds, and their effect on biological activity such as cell proliferation, oxidative stress, colony formation, mRNA expression of STAT3, and cell number was reported after the 48 h treatments in cancer cell lines. EGCG and myricetin reduce the STAT3 mRNA expression confirmed by RTPCR. Moreover, EGCG and myricetin reduce cell proliferation and ROS generation after 48 h treatments. Interestingly, our result also indicates that the reduction in potential for colony formation enhances anti-metastasis activity of EGCG and myricetin. The information obtained from our study assisted us in drawing a more lucid picture regarding the existence STAT3 natural compounds inhibitor on diverse cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B (2009) Signal transducer and activator of transcription-3, inflammation, and cancer. Ann N Y Acad Sci 1171:59–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alimova IN, Liu B, Fan Z, Edgerton SM, Dillon T, Lind SE, Thor AD (2009) Metformin inhibits breast cancer cell growth, colony formation and induces cell cycle arrest in vitro. Cell Cycle 8:909–915

    Article  CAS  PubMed  Google Scholar 

  • Azare J, Leslie K, Al-Ahmadie H, Gerald W, Weinreb PH, Violette SM, Bromberg J (2007) Constitutively activated Stat3 induces tumorigenesis and enhances cell motility of prostate epithelial cells through integrin β6. Mol Cell Biol 27:4444–4453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker S, Groner B, Müller CW (1998) Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature 394:145–151

    Article  CAS  PubMed  Google Scholar 

  • Bhanot A, Sharma R, Noolvi MN (2011) Natural sources as potential anti-cancer agents: a review. Int J Phytomed 3:09–26

    Google Scholar 

  • Bill A, Schmitz A, König K, Heukamp LC, Hannam JS, Famulok M (2012) Anti-proliferative effect of cytohesin inhibition in Gefitinib-resistant lung cancer cells. PLoS ONE 7:e41179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho JY, Park J (2008) Contribution of natural inhibitors to the understanding of the PI3K/PDK1/PKB pathway in the insulin-mediated intracellular signaling cascade. Int J Mol Sci 9:2217–2230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278:1803–1805

    Article  CAS  PubMed  Google Scholar 

  • Connors SK, Chornokur G, Kumar NB (2012) New insights into the mechanisms of green tea catechins in the chemoprevention of prostate cancer. Nutr Cancer 64:4–22

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100:72–79

    Article  CAS  PubMed  Google Scholar 

  • Da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1:364–369

    Article  PubMed  Google Scholar 

  • Dave B, Landis MD, Dobrolecki LE, Wu M-F, Zhang X, Westbrook TF, Hilsenbeck SG, Liu D, Lewis MT, Tweardy DJ (2012) Selective small molecule stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model. PLoS ONE 7:e30207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Debnath B, Xu S, Neamati N (2012) Small molecule inhibitors of signal transducer and activator of transcription 3 (Stat3) protein. J Med Chem 55:6645–6668

    Article  CAS  PubMed  Google Scholar 

  • Fletcher S, Turkson J, Gunning PT (2008) Molecular approaches towards the inhibition of the signal transducer and activator of transcription 3 (Stat3) protein. ChemMedChem 3:1159–1168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedbichler K, Kerenyi MA, Müllner EW, Moriggl R (2009) Stat5 as hematopoietic gatekeeper and oncogene upon tyrosine kinase-induced transformation. JAK-STAT Pathw Dis 131

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  PubMed  Google Scholar 

  • Gooch JL, Christy B, Yee D (2002) STAT6 mediates interleukin-4 growth inhibition in human breast cancer cells. Neoplasia 4:324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21:11–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47:1750–1759

    Article  CAS  PubMed  Google Scholar 

  • Hillman GG (2012) Dietary agents in cancer chemoprevention and treatment. J Ooncology

  • Huang AJ, Moffat B, Yansura DG (2005a) Heteromultimeric molecules. Google Patents

  • Huang HF, Murphy TF, Shu P, Barton AB, Barton BE (2005b) Stable expression of constitutively-activated STAT3 in benign prostatic epithelial cells changes their phenotype to those resembling malignant cells. Mol Cancer 4

  • Huang W, He T, Chai C, Yang Y, Zheng Y, Zhou P, Qiao X, Zhang B, Liu Z, Wang J (2012) Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression. PLoS ONE 7:e37693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Deliv Rev 54:355–366

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J Am Chem Soc 110:1657–1666

    Article  CAS  Google Scholar 

  • Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  • Kumamoto T, Fujii M, Hou D-X (2009) Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett 275:17–26

    Article  CAS  PubMed  Google Scholar 

  • Lin H-Y, Hou S-C, Chen S-C, Kao M-C, Yu C-C, Funayama S, Ho C-T, Way T-D (2012) (−)-Epigallocatechin gallate induces Fas/CD95-mediated apoptosis through inhibiting constitutive and IL-6-induced JAK/STAT3 signaling in head and neck squamous cell carcinoma cells. J Agric Food Chem 60:2480–2489

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Ordonez-Ercan D, Fan Z, Edgerton SM, Yang X, Thor AD (2007) Downregulation of erbB3 abrogates erbB2-mediated tamoxifen resistance in breast cancer cells. Int Cancer 120:1874–1882

    Article  CAS  Google Scholar 

  • Lu JJ, Crimin K, Goodwin JT, Crivori P, Orrenius C, Xing L, Tandler PJ, Vidmar TJ, Amore BM, Wilson AG (2004) Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat. J Med Chem 47:6104–6107

    Article  CAS  PubMed  Google Scholar 

  • Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12:5592–5603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nam S, Smith DM, Dou QP (2001) Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J Biol Chem 276:13322–13330

    Article  CAS  PubMed  Google Scholar 

  • Ni Z, Lou W, Leman ES, Gao AC (2000) Inhibition of constitutively activated Stat3 signaling pathway suppresses growth of prostate cancer cells. Cancer Res 60:1225–1228

    CAS  PubMed  Google Scholar 

  • Niu G, Heller R, Catlett-Falcone R, Coppola D, Jaroszeski M, Dalton W, Jove R, Yu H (1999) Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res 59:5059–5063

    CAS  PubMed  Google Scholar 

  • Niu G, Shain KH, Huang M, Ravi R, Bedi A, Dalton WS, Jove R, Yu H (2001) Overexpression of a dominant-negative signal transducer and activator of transcription 3 variant in tumor cells leads to production of soluble factors that induce apoptosis and cell cycle arrest. Cancer Res 61:3276–3280

    CAS  PubMed  Google Scholar 

  • Phillips P, Sangwan V, Borja-Cacho D, Dudeja V, Vickers S, Saluja A (2011) Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer Lett 308:181–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Phosrithong N, Ungwitayatorn J (2010) Molecular docking study on anticancer activity of plant-derived natural products. Med Chem Res 19:817–835

    Article  CAS  Google Scholar 

  • Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    Article  CAS  PubMed  Google Scholar 

  • Roell D, Baniahmad A (2011) The natural compounds atraric acid and N-butylbenzene-sulfonamide as antagonists of the human androgen receptor and inhibitors of prostate cancer cell growth. Mol Cell Endocrinol 332:1–8

    Article  CAS  PubMed  Google Scholar 

  • Sarkar FH, Li Y (2006) Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res 66:3347–3350

    Article  CAS  PubMed  Google Scholar 

  • Schindler C, Levy DE, Decker T (2007) JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282:20059–20063

    Article  CAS  PubMed  Google Scholar 

  • Shen X, Zhang Y, Feng Y, Zhang L, Li J, Xie Y-A, Luo X (2014) Epigallocatechin-3-gallate inhibits cell growth, induces apoptosis and causes S phase arrest in hepatocellular carcinoma by suppressing the AKT pathway. Int J Oncol 44:791–796

    CAS  PubMed  Google Scholar 

  • Shim J-H, Su Z-Y, Chae J-I, Kim DJ, Zhu F, Ma W-Y, Bode AM, Yang CS, Dong Z (2010) Epigallocatechin gallate suppresses lung cancer cell growth through Ras–GTPase-activating protein SH3 domain-binding protein 1. Cancer Prev Res 3:670–679

    Article  CAS  Google Scholar 

  • Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519

    Article  CAS  Google Scholar 

  • Siddiqui IA, Adhami VM, Afaq F, Ahmad N, Mukhtar H (2004) Modulation of phosphatidylinositol-3-kinase/protein kinase B, and mitogen-activated protein kinase-pathways by tea polyphenols in human prostate cancer cells. J Cell Biochem 91:232–242

    Article  CAS  PubMed  Google Scholar 

  • Simon AR, Rai U, Fanburg BL, Cochran BH (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol Cell Physiol 275:C1640–C1652

    CAS  Google Scholar 

  • Singh P, Bast F (2014a) In silico molecular docking study of natural compounds on wild and mutated epidermal growth factor receptor. Med Chem Res 23:5074–5085

    Article  CAS  Google Scholar 

  • Singh P, Bast F (2014b) Multitargeted molecular docking study of plant-derived natural products on phosphoinositide-3 kinase pathway components. Med Chem Res 23:1690–1700

    Article  CAS  Google Scholar 

  • Sunil H (2012) Inhibition studies of naturally occurring terpene based compounds with cyclin-dependent kinase 2 enzyme. J Comput Sci Syst Bio 5:2

    Google Scholar 

  • Takeda K, Akira S (2000) STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev 11:199–207

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, Kishimoto T, Akira S (1997) Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 94:3801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turkson J, Zhang S, Palmer J, Kay H, Stanko J, Mora LB, Sebti S, Yu H, Jove R (2004) Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity. Mol Cancer Ther 3:1533–1542

    CAS  PubMed  Google Scholar 

  • Turkson J, Zhang S, Mora LB, Burns A, Sebti S, Jove R (2005) A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. J Biol Chem 280:32979–32988

    Article  CAS  PubMed  Google Scholar 

  • Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL (2000) Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6(4):909–919

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ren X, Deng C, Yang L, Yan E, Guo T, Li Y, Xu MX (2013) Mechanism of the inhibition of the STAT3 signaling pathway by EGCG. Oncol Rep 30:2691–2696

    CAS  PubMed  Google Scholar 

  • Watowich SS, Hilton DJ, Lodish HF (1994) Activation and inhibition of erythropoietin receptor function: role of receptor dimerization. Mol Cell Bio 14:3535–3549

    CAS  Google Scholar 

  • Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809

    Article  CAS  PubMed  Google Scholar 

  • Yue P, Turkson J (2009) Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs

  • Zgheib A, Lamy S, Annabi B (2013) Epigallocatechin gallate targeting of membrane type 1 matrix metalloproteinase-mediated Src and Janus kinase/signal transducers and activators of transcription 3 signaling inhibits transcription of colony-stimulating factors 2 and 3 in mesenchymal stromal cells. J Biol Chem 288:13378–13386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang M, Zhu W, Ding N, Zhang W, Li Y (2013) Identification and characterization of small molecule inhibitors of signal transducer and activator of transcription 3 (STAT3) signaling pathway by virtual screening. Bioorg Med Chem Lett 23:2225–2229

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Wang L, Liu H, Zhao G, Ming L (2014) Enhancement of recombinant myricetin on the radiosensitivity of lung cancer A549 and H1299 cells. Diagn Pathol 9:68

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu B-H, Chen H-Y, Zhan W-H, Wang C-Y, Cai S-R, Wang Z, Zhang C-H, He Y-L (2011) (-)-Epigallocatechin-3-gallate inhibits VEGF expression induced by IL-6 via Stat3 in gastric cancer. World J Gastroenterol 17:2315

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Vice Chancellor, Central University of Punjab, Bathinda, Punjab, (India) for supporting this study with infrastructural requirements. We also thank Professor P. Ramarao (Dean, Academic Affairs), Central University of Punjab, Bathinda, Punjab, India, for his suggestions during the course that tremendously helped to improve this article. This study was also supported by a Senior Research Fellowship Grant-in-Aid from Indian Council of Medical Research (ICMR), Government of India awarded to PS.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Bast.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Bast, F. High-throughput virtual screening, identification and in vitro biological evaluation of novel inhibitors of signal transducer and activator of transcription 3. Med Chem Res 24, 2694–2708 (2015). https://doi.org/10.1007/s00044-015-1328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1328-6

Keywords

Navigation